@article{KYB_1994_30_6_a4,
author = {Fragulis, George F.},
title = {Minimal realizations of the inverse of a polynomial matrix using finite and infinite {Jordan} pairs},
journal = {Kybernetika},
pages = {607--616},
year = {1994},
volume = {30},
number = {6},
mrnumber = {1323663},
zbl = {0829.93012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a4/}
}
Fragulis, George F. Minimal realizations of the inverse of a polynomial matrix using finite and infinite Jordan pairs. Kybernetika, Tome 30 (1994) no. 6, pp. 607-616. http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a4/
[1] G. B. V. Verghese T. Levy, T. Kailath: A generalised state-space for singular systems. IEEE Trans. Automat. Control AC-26 (1981), 4, 811-831. | MR
[2] L. Dai: Singular Control Systems. Springer-Verlag, Berlin 1989. | MR | Zbl
[3] G. F. Fragulis: Analysis of Generalized Singular Systems. Ph.D. Dissertation, Aristotle Univ. of Thessaloniki, Thessaloniki, Greece 1990.
[4] F. R. Gantmacher: Theory of Matrices. Chelsea, New York 1959. | Zbl
[5] I. Gohberg P. Lancaster, L. Rodman: Matrix Polynomials. Academic Press, New York--London 1982. | MR
[6] H. H. Rosenbrock: State-Space and Multivariable Theory. Wiley, New York 1970. | MR | Zbl
[7] A. J. J. Van der Weiden: The Use of Structural Properties in Linear Multivariable Control System Design. Ph.D. Dissertation, Delft University of Technology, The Netherlands 1983.
[8] A. I. G. Vardulakis D. Limebeer, N. Karcanias: Structure and Smith-McMillan form of a rational matrix at infinity. Internat. J. Control 35 (1982), 4, 701. | MR
[9] A. I. G. Vardulakis: Linear Multivariable Control: Algebraic Analysis and Synthesis Methods. Wiley, New York 1991. | MR | Zbl
[10] A. I. G. Vardulakis, G. F. Fragulis: Infinite elementary divisors of polynomial matrices and impulsive solutions of linear homogeneous matrix differential equations. Circuits Systems Signal Process. 8 (1989), 3, 357-373. | MR | Zbl
[11] N. Cohen: Spectral analysis of regular matrix polynomials. Integral Equations Operator Theory 6 (1983), 161-183. | MR | Zbl