@article{KYB_1994_30_6_a1,
author = {Ku\v{c}era, V.},
title = {The pole placement equation. {A} survey},
journal = {Kybernetika},
pages = {578--584},
year = {1994},
volume = {30},
number = {6},
mrnumber = {1323660},
zbl = {0850.93325},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a1/}
}
Kučera, V. The pole placement equation. A survey. Kybernetika, Tome 30 (1994) no. 6, pp. 578-584. http://geodesic.mathdoc.fr/item/KYB_1994_30_6_a1/
[1] N. Bourbaki: Algèbre Commutative. Hermann et Cie, Paris 1961. | MR | Zbl
[2] E. Emre: The polynomial equation $QQ_C + RP_C = \Phi$ with application to dynamic feedback. SIAM J. Control Optim. 18 (1980), 611-620. | MR
[3] J. Ježek: New algorithm for minimal solution of linear polynomial equations. Kybernetika 18 (1982), 505-516. | MR
[4] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979. | MR
[5] V. Kučera: Fixed degree solutions of polynomial equations. In: Proc. 2nd IFAC Workshop on System Structure and Control, Prague 1992, pp. 24-26.
[6] V. Kučera, P. Zagalak: Constant solutions of polynomial equations. Internat. J. Control 53 (1991), 495-502. | MR
[7] V. Kučera J. Ježek, M. Krupička: Numerical analysis of diophantine equations. In: Advanced Methods in Adaptive Control for Industrial Applications (K. Warwick, M. Kárný and A. Halousková, eds.), Springer, Berlin 1991, pp. 128-136. | MR