@article{KYB_1994_30_5_a6,
author = {Van\v{e}\v{c}ek, Anton{\'\i}n and \v{C}elikovsk\'y, Sergej},
title = {Synthesis of chaotic systems},
journal = {Kybernetika},
pages = {537--542},
year = {1994},
volume = {30},
number = {5},
mrnumber = {1314349},
zbl = {0832.93028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_5_a6/}
}
Vaněček, Antonín; Čelikovský, Sergej. Synthesis of chaotic systems. Kybernetika, Tome 30 (1994) no. 5, pp. 537-542. http://geodesic.mathdoc.fr/item/KYB_1994_30_5_a6/
[1] D. V. Anosov, V. I. Arnold (eds.): Dynamical Systems I. Springer, Berlin 1988. | MR | Zbl
[2] V. I. Arnold: Ordinary Differential Equations. Nauka, Moscow 1971. (In Russian.) | MR
[3] L. O. Chua (ed.): Chaotic Systems. Spec. Iss. of Proc. IEEE 75 (1987), 8.
[4] L. O. Chua: The genesis of Chua's circuit. AEÜ 46 (1992), 250-257.
[5] S. Čelikovský, A. Vaněček: Bilinear systems and chaos. Kybernetika 30 (1994), 404-424. | MR
[6] A. Garfinkel: The virtues of chaos. Behavioral Brain Sci. 10 (1987), 178-179.
[7] R. Genesio, A. Tesi: Chaos prediction in nonlinear feedback systems. Proc. IEE D-138 (1991), 313-320. | Zbl
[8] A. J. Goldberger: Nonlinear dynamics, fractals, cardiac physiology and sudden death. In: Temporal Disorder in Human Oscillatory Systems, Springer-Verlag, Berlin 1987, pp. 118-125. | MR
[9] A. V. Holden (ed.): Chaos. Princeton University Press, Princeton 1986. | MR | Zbl
[10] T. Kailath: Linear Systems. Prentice Hall, Englewood Cliffs 1980. | MR | Zbl
[11] T. Matsumoto L. O. Chua, M. Komuro: The double scroll. IEEE Trans. CAS-32 (1985), 798-818. | MR
[12] R. Seydel: From Equilibrium to Chaos. Elsevier, New York 1988. | MR | Zbl
[13] A. Vaněček: Strongly nonlinear and other control systems. Problems Control Inform. Theory 20 (1991), 3-12. | MR
[14] A. Vaněček: Control System Theory. (In Czech with extended summary in English.) Academia, Prague 1990.
[15] A. Vaněček, S. Čelikovský: Wrapped eigenstructure of chaos. Kybernetika 29 (1993), 73-79. | MR
[16] A. Vaněček, S. Čelikovský: Control Systems. From Linear Analysis to Chaos Synthesis. Prentice/Hall Int., to be published.
[17] S. Wiggins: Global Bifurcations and Chaos. Springer-Verlag, New York 1988. | MR | Zbl