Bilinear systems and chaos
Kybernetika, Tome 30 (1994) no. 4, pp. 403-424 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C11, 34H05, 37D45, 58F13, 93C10, 93C15, 93D15
@article{KYB_1994_30_4_a3,
     author = {\v{C}elikovsk\'y, Sergej and Van\v{e}\v{c}ek, Anton{\'\i}n},
     title = {Bilinear systems and chaos},
     journal = {Kybernetika},
     pages = {403--424},
     year = {1994},
     volume = {30},
     number = {4},
     mrnumber = {1303292},
     zbl = {0823.93026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a3/}
}
TY  - JOUR
AU  - Čelikovský, Sergej
AU  - Vaněček, Antonín
TI  - Bilinear systems and chaos
JO  - Kybernetika
PY  - 1994
SP  - 403
EP  - 424
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a3/
LA  - en
ID  - KYB_1994_30_4_a3
ER  - 
%0 Journal Article
%A Čelikovský, Sergej
%A Vaněček, Antonín
%T Bilinear systems and chaos
%J Kybernetika
%D 1994
%P 403-424
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a3/
%G en
%F KYB_1994_30_4_a3
Čelikovský, Sergej; Vaněček, Antonín. Bilinear systems and chaos. Kybernetika, Tome 30 (1994) no. 4, pp. 403-424. http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a3/

[1] F. Alberting, E. D. Sontag: Some connections between chaotic dynamical systems and control systems. In: Proceedings of First European Control Conference, Grenoble, 1991, pp. 159-163.

[2] S. Čelikovský, A. Vaněček: Bilinear systems as the strongly nonlinear systems. In: Systems Structure and Control (V. Strejc, ed.), Pergamon Press, Oxford 1992, pp. 264-267.

[3] S. Čelikovský: On the stabilization of homogeneous bilinear systems. Systems and Control Lett. 21 (1993), 6. | MR

[4] W. J. Freeman: Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potential. IEEE Trans. Circuits and Systems 35 (1988), 791-783. | MR

[5] R. Genesio, A. Tesi: Chaos prediction in nonlinear feedback systems. IEE Proc. D 138 (1991), 313-320. | Zbl

[6] R. Genesio, A. Tesi: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28 (1992), 531-548. | Zbl

[7] R. Genesio, A. Tesi: A harmonic balance approach for chaos prediction: the Chua's circuit. Internat. J. of Bifurcation and Chaos 2 (1992), 61-79. | MR

[8] A. L. Goldberger: Nonlinear dynamics, fractals, cardiac physiology and sudden death. In: Temporal Disorder in Human Oscillatory Systems, Springer-Verlag, Berlin 1987. | MR

[9] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York 1986. | MR

[10] A. V. Holden (ed.): Chaos. Manchester Univ., Manchester 1986. | Zbl

[11] H. Hyotyniemi: Postponing chaos using a robust stabilizer. In: Preprints of First IFAC Symp. Design Methods of Control Systems, Pergamon Press, Oxford 1991, pp. 568-572.

[12] L. O. Chua (ed.): Special Issue on Chaotic Systems. IEEE Proc. 6 (1987), 8, 75.

[13] E. N. Lorenz: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1965), 130-141.

[14] G. B. Di Massi, A. Gombani: On observability of chaotic systems: an example. Realization and Modelling in Systems Theory. In: Proc. International Symposium MTNS-89, Vol. II, Birkhäuser, Boston -- Basel -- Berlin 1990, pp. 489-496. | MR

[15] R. R. Mohler: Bilinear Control Processes. Academic Press, New York 1973. | MR | Zbl

[16] J. M. Ottino: The mixing of fluids. Scientific Amer. 1989, 56-67.

[17] C. T. Sparrow: The Lorenz Equations: Bifurcation, Chaos and Strange Attractors. Springer-Verlag, New York 1982. | MR

[18] A. Vaněček: Strongly nonlinear and other control systems. Problems Control Inform. Theory 20 (1991), 3-12. | MR

[19] A. Vaněček, S. Čelikovský: Chaos synthesis via root locus. IEEE Trans. Circuits and Systems 41 (1994), 1, 54-60.

[20] A. Vaněček, S. Čelikovský: Synthesis of chaotic systems. Kybernetika, accepted.

[21] S. Wiggins: Global Bifurcations and Chaos. Analytical Methods. Springer-Verlag, New York 1988. | MR | Zbl