Differential geometric structures of stable state feedback systems with dual connections
Kybernetika, Tome 30 (1994) no. 4, pp. 369-386 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53B21, 53C07, 53C21, 93B29, 93B52, 93C05, 93D15
@article{KYB_1994_30_4_a0,
     author = {Ohara, Atsumi and Amari, Shun-ichi},
     title = {Differential geometric structures of stable state feedback systems with dual connections},
     journal = {Kybernetika},
     pages = {369--386},
     year = {1994},
     volume = {30},
     number = {4},
     mrnumber = {1303289},
     zbl = {0821.93029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a0/}
}
TY  - JOUR
AU  - Ohara, Atsumi
AU  - Amari, Shun-ichi
TI  - Differential geometric structures of stable state feedback systems with dual connections
JO  - Kybernetika
PY  - 1994
SP  - 369
EP  - 386
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a0/
LA  - en
ID  - KYB_1994_30_4_a0
ER  - 
%0 Journal Article
%A Ohara, Atsumi
%A Amari, Shun-ichi
%T Differential geometric structures of stable state feedback systems with dual connections
%J Kybernetika
%D 1994
%P 369-386
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a0/
%G en
%F KYB_1994_30_4_a0
Ohara, Atsumi; Amari, Shun-ichi. Differential geometric structures of stable state feedback systems with dual connections. Kybernetika, Tome 30 (1994) no. 4, pp. 369-386. http://geodesic.mathdoc.fr/item/KYB_1994_30_4_a0/

[1] D. F. Delchamps: Global structure of families of multivariable linear systems with an application to identification. Math. Systems Theory 18 (1985), 329-380. | MR

[2] S. Amari: Differential geometry of a parametric family of invertible linear systems -- Riemannian metric, dual affine connections, and divergence. Math. Systems Theory 20 (1987), 53-83. | MR | Zbl

[3] P. S. Krishnaprasad: Symplectic mechanics and rational functions. Ricerche Automat. 10 (1979), 2, 107-135. | MR

[4] A. D. C. Youla H. A. Jabr, J. J. Bongiorno: Modern Wiener-Hopf design of optimal controllers. Part II -- the multivariable case. IEEE Trans. Automat. Control 21 (1976), 319-338. | MR

[5] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979. | MR

[6] A. Ohara, T. Kitamori: Geometric structures of stable state feedback systems. In: Proc. of 29th IEEE C.D.C. 1990, pp. 2494-2490, and IEEE Trans. Automat. Control 38 (1993), 10, 1579-1583. | MR

[7] A. Ohara, S. Amari: Differential geometric structures of stable state feedback systems with dual connections. In: Proc. 2nd IFAC Workshop on System Structure and Control 1992, pp. 176-179.

[8] S. Amari: Differential-Geometrical Methods in Statistics. Springer-Verlag, Berlin 1985. | MR | Zbl

[9] A. Ohara S. Nakazumi, N. Suda: Relations between a parametrization of stabilizing state feedback gains and eigenvalue locations. Systems Control Lett. 16 (1991), 261-266. | MR

[10] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry II. J. Wiley, New York 1969.

[11] S. Helgason: Differential Geometry and Symmetric Spaces. Academic Press, New York 1962. | MR | Zbl

[12] M. Takeuchi: Lie Groups II. Iwanami, Tokyo 1978 (in Japanese). | MR