Chi-squared goodness-of-fit test for the family of logistic distributions
Kybernetika, Tome 30 (1994) no. 3, pp. 214-222 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F03, 62G10, 62G20
@article{KYB_1994_30_3_a1,
     author = {Aguirre, Neige and Nikulin, Mikhail},
     title = {Chi-squared goodness-of-fit test for the family of logistic distributions},
     journal = {Kybernetika},
     pages = {214--222},
     year = {1994},
     volume = {30},
     number = {3},
     mrnumber = {1291924},
     zbl = {0827.62017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_3_a1/}
}
TY  - JOUR
AU  - Aguirre, Neige
AU  - Nikulin, Mikhail
TI  - Chi-squared goodness-of-fit test for the family of logistic distributions
JO  - Kybernetika
PY  - 1994
SP  - 214
EP  - 222
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1994_30_3_a1/
LA  - en
ID  - KYB_1994_30_3_a1
ER  - 
%0 Journal Article
%A Aguirre, Neige
%A Nikulin, Mikhail
%T Chi-squared goodness-of-fit test for the family of logistic distributions
%J Kybernetika
%D 1994
%P 214-222
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1994_30_3_a1/
%G en
%F KYB_1994_30_3_a1
Aguirre, Neige; Nikulin, Mikhail. Chi-squared goodness-of-fit test for the family of logistic distributions. Kybernetika, Tome 30 (1994) no. 3, pp. 214-222. http://geodesic.mathdoc.fr/item/KYB_1994_30_3_a1/

[1] N. Balakrishnan (ed.): Handbook of the Logistic Distribution. Marcel Dekker, New York 1992. | MR | Zbl

[2] N. Balakrishnan, A. C. Cohen: Order Statistics and Inference: Estimation Methods. Academic Press, Boston 1990. | MR

[3] L. N. Bolshev, M. S. Nikulin: One solution of the problem of homogeneity. Serdica 1 (1975), 104-109. | MR

[4] H. Chernoff, E. L. Lehmann: The use of maximum likelihood estimates in $\chi^2$ tests for goodness of fit. Ann. Math. Statist. 25 (1954), 579-586. | MR

[5] H. Cramer: Mathematical Methods of Statistics. Princeton University Press, Princeton, N. J. 1946. | MR | Zbl

[6] R. C. Dahiya, J. Gurland: Pearson chi-square test of fit with random intervals. Biometrika 59 (1972), 1, 147-153. | MR

[7] F. C. Drost: Asymptotics for generalised chi-square goodness-of-fit tests. CWI Tract 48, Centre for Mathematics and Computer Sciences, Amsterdam 1988. | MR

[8] R. M. Dudley: Probabilities and metrics-convergence of laws on metric spaces with a view to statistical testing. Lecture Notes 45, Aarhus Universitet, Aarhus 1976. | MR | Zbl

[9] K. O. Dzhaparidze, M. S. Nikulin: On a modification of the standard statistic of Pearson. Theory Prob. Appl. 19 (1974), 4, 851-852.

[10] K. O. Dzhaparidze, M. S. Nikulin: On evaluation of statistics of chi-square type tests. In: Problems of the Theory of Probability Distributions 12 (1992), Nauka, St. Petersburg, 59-90.

[11] R. A. Fisher: On a property connecting the $\chi^2$ measure of discrepancy with the method of maximum likelihood. Atti de Congresso Internazionale di Mathematici, Bologna, 6 (1928), 94-100.

[12] H. L. Harter, A. H. Moore: Maximum-likelihood estimation, from censored samples, of the parameters of a logistic distribution. J. Amer. Statist. Assoc. 62 (1967), 675-684. | MR | Zbl

[13] L. Le Cam C. Mahan, A. Singh: An extension of a theorem of H. Chernoff and E. L. Lehmann. In: Recent Advances in Statistics. Academic Press, New York 1983, pp. 303-332. | MR

[14] D. S. Moore, M. C. Spruill: Unified large-sample theory of general chi-squared statistics for tests of fit. Ann. of Statist. 3 (1975), 599-616. | MR | Zbl

[15] M. S. Nikulin: Chi-square test for normality. In: Proceedings of International Vilnius Conference on Probability Theory and Mathematical Statistics Vol. 2, 1973, pp. 119-122.

[16] M. S. Nikulin: Chi-square test for continuous distributions with shift and scale parameters. Theory Probab. Appl. 18 (1973), 3, 559-568. | MR | Zbl

[17] M. S. Nikulin: Chi-square test for continuous distributions. Theory Probab. Appl. 18 (1973), 3, 638-639. | MR | Zbl

[18] M. S. Nikulin, V. C. Voinov: A chi-square goodness-of-fit test for exponential distribution of the first order. Lecture Notes in Math. 1312, Springer-Verlag, Berlin 1989, pp. 239-258. | MR

[19] C. R. Rao: Linear Statistical Inference and its Applications. J. Wiley, New York 1965. | MR | Zbl

[20] K. C. Rao, D. S. Robson: A chi-squared statistic for goodness-of-fit tests within the exponential family. Commun. Statist. 3 (1974), 1139-1153. | MR

[21] V. C Voinov, M. S. Nikulin: Unbiased Estimators and their Applications. Part I: Univariate case. Kluwer Academic Publisher, Dordrecht 1993. | MR

[22] S. Zacks: The Theory of Statistical Inference. Wiley, New York 1979. | MR