@article{KYB_1994_30_2_a7,
author = {Pronzato, Luc and P\'azman, Andrej},
title = {Second-order approximation of the entropy in nonlinear least-squares estimation},
journal = {Kybernetika},
pages = {187--198},
year = {1994},
volume = {30},
number = {2},
mrnumber = {1283494},
zbl = {0812.62071},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a7/}
}
Pronzato, Luc; Pázman, Andrej. Second-order approximation of the entropy in nonlinear least-squares estimation. Kybernetika, Tome 30 (1994) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a7/
[1] S. Amari: Differential-Geometrical Methods in Statistics. Springer, Berlin 1985. | MR | Zbl
[2] D. Bates, D. Watts: Relative curvature measures of nonlinearity. J. Roy. Statist. Soc. Ser. B 42 (1980), 1-25. | MR | Zbl
[3] M. Box: Bias in nonlinear estimation. J. Roy. Statist. Soc. Ser. B 33 (1971), 171-201. | MR | Zbl
[4] G. Clarke: Moments of the least-squares estimators in a non-linear regression model. J. Roy. Statist. Soc. Ser. B 42 (1980), 227-237. | MR | Zbl
[5] P. Hougaard: Saddlepoint approximations for curved exponential families. Statist. Probab. Lett. 3 (1985), 161-166. | MR | Zbl
[6] A. Pázman: Probability distribution of the multivariate nonlinear least-squares estimates. Kybernetika 20 (1984), 209-230. | MR
[7] A. Pázman: Small-sample distributional properties of nonlinear regression estimators (a geometric approach) (with discussion). Statistics 21 (1990), 3, 323-367. | MR
[8] N. Reid: Saddlepoint methods and statistical inference. Statist. Sci. 3 (1988), 213-238. | MR | Zbl