@article{KYB_1994_30_2_a2,
author = {Zampieri, Sandro},
title = {Exact modelling of scalar {2D} arrays},
journal = {Kybernetika},
pages = {129--140},
year = {1994},
volume = {30},
number = {2},
mrnumber = {1283490},
zbl = {0814.93009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a2/}
}
Zampieri, Sandro. Exact modelling of scalar 2D arrays. Kybernetika, Tome 30 (1994) no. 2, pp. 129-140. http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a2/
[1] R. E. Kalman: On partial realizations, transfer functions and canonical forms. Acta Polytech. Scand. Math. Comput. Sci. Ser. 31 (1978), 9-32. | MR
[2] J. C. Willems: Models for dynamics. Dynamics reported 2 (1988), 171-269. | MR
[3] C. Heij: Exact modelling and identifiability of linear systems. Automatica 28 (1992), 325-344. | MR | Zbl
[4] S. Sakata: Finding a minimal set of linear recurring relations capable of generating a given two-dimensional array. J. Symbolic Computat. 5 (1988), 321-337. | MR
[5] S. Sakata: A Gröbner basis and a minimal polynomial set of a finite $nd$ array. (Lecture Notes in Computer Science 508, S. Sakata, ed.), Springer, Berlin 1990, pp. 280-291. | MR
[6] P. Rocha: Structure and Representation of 2-D Systems. PhD Dissertation, University of Groningen, 1990.
[7] P. Rocha, J. C. Willems: Canonical computational forms for AR 2-D systems. Multidimensional Systems and Signal Processing 2 (1990), 251-278.
[8] B. Buchberger: Gröbner basis: An algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory (N. K. Bose, ed.), D. Reidel, 1985, pp. 184-232.