Exact modelling of scalar 2D arrays
Kybernetika, Tome 30 (1994) no. 2, pp. 129-140 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93A10, 93A30, 93B25, 93B30
@article{KYB_1994_30_2_a2,
     author = {Zampieri, Sandro},
     title = {Exact modelling of scalar {2D} arrays},
     journal = {Kybernetika},
     pages = {129--140},
     year = {1994},
     volume = {30},
     number = {2},
     mrnumber = {1283490},
     zbl = {0814.93009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a2/}
}
TY  - JOUR
AU  - Zampieri, Sandro
TI  - Exact modelling of scalar 2D arrays
JO  - Kybernetika
PY  - 1994
SP  - 129
EP  - 140
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a2/
LA  - en
ID  - KYB_1994_30_2_a2
ER  - 
%0 Journal Article
%A Zampieri, Sandro
%T Exact modelling of scalar 2D arrays
%J Kybernetika
%D 1994
%P 129-140
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a2/
%G en
%F KYB_1994_30_2_a2
Zampieri, Sandro. Exact modelling of scalar 2D arrays. Kybernetika, Tome 30 (1994) no. 2, pp. 129-140. http://geodesic.mathdoc.fr/item/KYB_1994_30_2_a2/

[1] R. E. Kalman: On partial realizations, transfer functions and canonical forms. Acta Polytech. Scand. Math. Comput. Sci. Ser. 31 (1978), 9-32. | MR

[2] J. C. Willems: Models for dynamics. Dynamics reported 2 (1988), 171-269. | MR

[3] C. Heij: Exact modelling and identifiability of linear systems. Automatica 28 (1992), 325-344. | MR | Zbl

[4] S. Sakata: Finding a minimal set of linear recurring relations capable of generating a given two-dimensional array. J. Symbolic Computat. 5 (1988), 321-337. | MR

[5] S. Sakata: A Gröbner basis and a minimal polynomial set of a finite $nd$ array. (Lecture Notes in Computer Science 508, S. Sakata, ed.), Springer, Berlin 1990, pp. 280-291. | MR

[6] P. Rocha: Structure and Representation of 2-D Systems. PhD Dissertation, University of Groningen, 1990.

[7] P. Rocha, J. C. Willems: Canonical computational forms for AR 2-D systems. Multidimensional Systems and Signal Processing 2 (1990), 251-278.

[8] B. Buchberger: Gröbner basis: An algorithmic method in polynomial ideal theory. In: Multidimensional Systems Theory (N. K. Bose, ed.), D. Reidel, 1985, pp. 184-232.