Control of nonholonomic systems via dynamic compensation
Kybernetika, Tome 29 (1993) no. 6, pp. 593-608 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 70F25, 70Q05, 93B52, 93C10
@article{KYB_1993_29_6_a5,
     author = {De Luca, Alessandro and Di Benedetto, Marika D.},
     title = {Control of nonholonomic systems via dynamic compensation},
     journal = {Kybernetika},
     pages = {593--608},
     year = {1993},
     volume = {29},
     number = {6},
     mrnumber = {1264889},
     zbl = {0802.93023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a5/}
}
TY  - JOUR
AU  - De Luca, Alessandro
AU  - Di Benedetto, Marika D.
TI  - Control of nonholonomic systems via dynamic compensation
JO  - Kybernetika
PY  - 1993
SP  - 593
EP  - 608
VL  - 29
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a5/
LA  - en
ID  - KYB_1993_29_6_a5
ER  - 
%0 Journal Article
%A De Luca, Alessandro
%A Di Benedetto, Marika D.
%T Control of nonholonomic systems via dynamic compensation
%J Kybernetika
%D 1993
%P 593-608
%V 29
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a5/
%G en
%F KYB_1993_29_6_a5
De Luca, Alessandro; Di Benedetto, Marika D. Control of nonholonomic systems via dynamic compensation. Kybernetika, Tome 29 (1993) no. 6, pp. 593-608. http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a5/

[1] A. M. Bloch, N. H. McClamroch: Control of mechanical systems with classical nonholonomic constraints. In: Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, 1989, pp. 201-205. | MR

[2] A.M. Bloch M. Reyhanoglu, N. H. McClamroch: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automat. Control 57 (1992), 11, 1746-1757. | MR

[3] R. W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory (R. Brockett, R. S. Millmann and H.J. Sussmann, eds.), Birkhauser, Boston, MA, 1983, pp. 181-191. | MR | Zbl

[4] G. Campion B. d'Andrea-Novel, G. Bastin: Structural properties of nonholonomic mechanical systems. In: Proc. 1st European Control Conference, Grenoble 1991, pp. 2089-2094.

[5] C. Canudas de Wit, O. J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 57 (1992), 11, 1791-1797. | MR

[6] J.-M. Coron: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992), 295-312. | MR | Zbl

[7] B. d'Andrea-Novel G. Bastin, G. Campion: Dynamic feedback linearization of nonholonomic wheeled mobile robots. In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 2527-2532.

[8] A. De Luca L. Lanari, G. Oriolo: Control of redundant robots on cyclic trajectories. In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 500-506.

[9] J. Descusse, D. H. Moog: Dynamic decoupling for right-invertible nonlinear systems. Systems Control Lett. 8 (1987), 345-349. | MR | Zbl

[10] M. D. Di Benedetto, J. W. Grizzle: An analysis of regularity conditions in nonlinear synthesis. In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds., Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Berlin - Heidelberg - New York 1990, pp. 843-850. | Zbl

[11] A. Isidori: Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin - Heidelberg - New York 1989.

[12] G. Lafferriere, H. J. Sussmann: Motion planning for controllable systems without drift: A preliminary report. Report SYCON-90-04, Rutgers University, N.J., July 1990.

[13] J. P. Laumond: Nonholonomic motion planning versus controllability via the multibody car system example. Report STAN-CS-90-1345, Stanford University, CA, December 1990.

[14] R. Marino: On the largest feedback linearizable subsystem. Systems Control Lett. 6 (1986), 345-351. | MR

[15] R. M. Murray, S. S. Sastry: Steering nonholonomic systems in chained form. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1121-1126.

[16] G. Oriolo, Y. Nakamura: Control of mechanical systems with second-order non-holonomic constraints: Underactuated manipulators. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 2394-2403.

[17] J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 18 (1992), 147-158. | MR | Zbl

[18] J.-B. Pomet B. Thuilot G. Bastin, G. Campion: A hybrid strategy for the feed- back stabilization of nonholonomic mobile robots. In: Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 129-134.

[19] M. Reyhanoglu, N. H. McClamroch: Reorientation of space multibody systems maintaining zero angular momentum. In: Proc. 1991 AIAA Conf. on Guidance, Navigation, and Control, New Orleans 1991, pp. 1330-1340.

[20] C. Samson, K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space. In: Proc. 1991 IEEE Internat. Conf. on Robotics and Automation, Sacramento 1991, pp. 1136-1141.

[21] H. J. Sussmann: A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 1, 158-194. | MR | Zbl

[22] H. J. Sussmann: Local controllability and motion planning for some classes of systems with drift. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1110-1114.

[23] Z. Vafa, S. Dubowsky: The kinematics and dynamics of space manipulators: The virtual manipulator approach. Internat. J. Robotics Research 9 (1990), 4, 3-21.