@article{KYB_1993_29_6_a3,
author = {Helmke, Uwe and Prechtel, Michael and Shayman, Mark A.},
title = {Riccati-like flows and matrix approximations},
journal = {Kybernetika},
pages = {563--582},
year = {1993},
volume = {29},
number = {6},
mrnumber = {1264887},
zbl = {0802.65058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a3/}
}
Helmke, Uwe; Prechtel, Michael; Shayman, Mark A. Riccati-like flows and matrix approximations. Kybernetika, Tome 29 (1993) no. 6, pp. 563-582. http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a3/
[1] G. Eckart, G. Young: The approximation of one matrix by another of lower rank. Psychometrika / (1936), 211-218.
[2] G. H. Golub, C. Van Loan: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17 (1980), 883-843. | MR | Zbl
[3] G. H. Golub A. Hoffmann, G. W. Stewart: A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl. 88/89 (1987), 317-327. | MR
[4] U. Helmke, J. B. Moore: Optimization and Dynamical Systems. Springer-Verlag, Berlin 1993. | MR
[5] U. Helmke, M. A. Shayman: Critical points of matrix least squares distance functions. Linear Algebra Appl., to appear. | MR | Zbl
[6] N. J. Higham: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103 (1988), 103-118. | MR | Zbl
[7] B. De Moor, J. David: Total linear least squares and the algebraic Riccati equation. Systems Control Lett. 5 (1992), 329-337. | MR | Zbl
[8] J. B. Moore R. E. Mahony, U. Helmke: Recursive gradient algorithms for eigenvalue and singular value decomposition. SIAM J. Matrix Anal. Appl., to appear. | MR