On the cover problems of geometric theory
Kybernetika, Tome 29 (1993) no. 6, pp. 547-562 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A22, 93B27
@article{KYB_1993_29_6_a2,
     author = {Karcanias, Nicos and Vafiadis, Dimitris},
     title = {On the cover problems of geometric theory},
     journal = {Kybernetika},
     pages = {547--562},
     year = {1993},
     volume = {29},
     number = {6},
     mrnumber = {1264886},
     zbl = {0821.93026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a2/}
}
TY  - JOUR
AU  - Karcanias, Nicos
AU  - Vafiadis, Dimitris
TI  - On the cover problems of geometric theory
JO  - Kybernetika
PY  - 1993
SP  - 547
EP  - 562
VL  - 29
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a2/
LA  - en
ID  - KYB_1993_29_6_a2
ER  - 
%0 Journal Article
%A Karcanias, Nicos
%A Vafiadis, Dimitris
%T On the cover problems of geometric theory
%J Kybernetika
%D 1993
%P 547-562
%V 29
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a2/
%G en
%F KYB_1993_29_6_a2
Karcanias, Nicos; Vafiadis, Dimitris. On the cover problems of geometric theory. Kybernetika, Tome 29 (1993) no. 6, pp. 547-562. http://geodesic.mathdoc.fr/item/KYB_1993_29_6_a2/

[1] A. C. Antoulas: New results on the algebraic theory of linear systems: the solution of cover problems. Linear Algebra Appl. 50 (1983), 1-43. | MR

[2] E. Emre L. M. Silverman, K. Glover: Generalised dynamic covers for linear systems with applications to deterministic identification problems. IEEE Trans. Automat. Control AC-22 (1977), 26-35. | MR

[3] S. Jaffe, N. Karcanias: Matrix pencil characterisation of almost (A, B)-invariant subspaces: a classification of geometric concepts. Internat. J. Control 33(1981), 51-93. | MR

[4] N. Karcanias: Matrix pencil approach to geometric system theory. Proc. IEE 126 (1990), 585-590. | MR

[5] N. Karcanias: The global role of instrumentation in systems design and control. The concise Encyclopedia of Measurement and Instrumentation, Pergamon Press, to appear.

[6] N. Karcanias: Proper invariant realisations of singular system problems. IEEE Trans. Automat. Control AC-35 (1990), 230-233. | MR

[7] N. Karcanias, B. Kouvaritakis: The output zeroing problem and its relationship to the invariant zero structure: a matrix pencil approach. Internat. J. Control 30 (1979), 395-415. | MR | Zbl

[8] N. Karcanias, C. Giannacopoulos: Necessary and sufficient conditions for zero assignment by constant squaring down. Linear Algebra Appl., Special issue on control theory 122/123/124 (1989), 415-446. | MR

[9] N. Karcanias, G. Kalogeropoulos: Geometric theory and feedback invariants of generalized linear systems: a matrix pencil approach. Circuits Systems Signal Process. 5 (1989), 3, 375-397. | MR | Zbl

[10] A. S. Morse: Minimal solutions to transfer matrix equations. IEEE Trans. Automat. Control AC-18(1973), 346-354. | MR

[11] R. C. Thompson: Interlacing inequalities for invariant factors. Linear Algebra Appl. 24 (1979), 1-31. | MR | Zbl

[12] J. C. Willems: Almost invariant subspaces: an approach to high gain feedback design - Part I, almost controlled invariant subspaces. IEEE Trans. Automat. Control AC-26 (1981), 235-252. | MR

[13] W. M. Wonham: Linear Multivariate Control: A Geometric Approach. Springer-Verlag, New York 1979. | MR

[14] W. M. Wonham, A. S. Morse: Feedback invariants for linear multivariable systems. Automatica 8 (1972), 93-100. | MR

[15] F. R. Gantmacher: The Theory of Matrices. Volume I, II. Chelsea, New York 1959.