@article{KYB_1993_29_5_a8,
author = {Perdon, A. M. and Zheng, Y. F. and Moog, C. H. and Conte, G.},
title = {Disturbance decoupling for nonlinear systems: {A} unified approach},
journal = {Kybernetika},
pages = {479--484},
year = {1993},
volume = {29},
number = {5},
mrnumber = {1264880},
zbl = {0849.93015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a8/}
}
Perdon, A. M.; Zheng, Y. F.; Moog, C. H.; Conte, G. Disturbance decoupling for nonlinear systems: A unified approach. Kybernetika, Tome 29 (1993) no. 5, pp. 479-484. http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a8/
[1] E. Delaleati: Sur les derivees de l'entree en representation et commande des systemes non lineaires. Ph.D. Thesis dissertation, Universite Paris-Sud 1993.
[2] M. D. Di Benedetto J. W. Crizzle, C. H. Moog: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27(1989), 658-672. | MR
[3] L. Cao, Y. F. Zheng: Disturbance decoupling via dynamic feedbacks. Internat. J. Systems Sci. 23 (1992), 683-694. | MR
[4] M. Fliess: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Automat. Control 35 (1990), 994-1001. | MR | Zbl
[5] H. J. C. Huijberts H. Nijmeijer, L. L.M. Van Der Wegen: Dynamic disturbance decoupling for nonlinear systems: the nonsquare and noninvertible case. In: Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhauser, Boston 1991, pp. 243-252. | MR
[6] H. J. C. Huijberts H. Nijmeijer, L. L. M. Van Der Wegen: Dynamic disturbance decoupling for nonlinear systems. SIAM J. Control Optim. 30 (1992), 336-349. | MR
[7] A. Isidori: Nonlinear Control Theory. Second edition. Springer-Verlag, New York 1989. | MR | Zbl
[8] W. Respondek: Disturbance decoupling via dynamic feedback. In: Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhauser, Boston 1991, pp. 347-357. | MR | Zbl
[9] L. L. M. van der Wegen: Local disturbance decoupling with stability for nonlinear systems. (Lecture Notes in Control and Information Sciences 166.) Springer-Verlag, Berlin 1991. | MR | Zbl
[10] W.M. Wonham: Linear Multivariate Control: a Geometric Approach. Third edition. Springer-Verlag, New York 1985. | MR
[11] Y. F. Zheng, L. Cao: Reduced inverses for controlled systems. Math. Control Signals Systems, to appear. | MR