Control techniques for chaotic dynamical systems
Kybernetika, Tome 29 (1993) no. 5, pp. 469-478 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34H05, 37-99, 37D45, 93C10, 93D15
@article{KYB_1993_29_5_a7,
     author = {Genesio, Roberto and Tesi, Alberto},
     title = {Control techniques for chaotic dynamical systems},
     journal = {Kybernetika},
     pages = {469--478},
     year = {1993},
     volume = {29},
     number = {5},
     mrnumber = {1264879},
     zbl = {0809.34058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a7/}
}
TY  - JOUR
AU  - Genesio, Roberto
AU  - Tesi, Alberto
TI  - Control techniques for chaotic dynamical systems
JO  - Kybernetika
PY  - 1993
SP  - 469
EP  - 478
VL  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a7/
LA  - en
ID  - KYB_1993_29_5_a7
ER  - 
%0 Journal Article
%A Genesio, Roberto
%A Tesi, Alberto
%T Control techniques for chaotic dynamical systems
%J Kybernetika
%D 1993
%P 469-478
%V 29
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a7/
%G en
%F KYB_1993_29_5_a7
Genesio, Roberto; Tesi, Alberto. Control techniques for chaotic dynamical systems. Kybernetika, Tome 29 (1993) no. 5, pp. 469-478. http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a7/

[1] E. H. Abed H. O. Wang, R. C. Chen: Stabilization of period doubling bifurcations and implications for control of chaos. In: Proc. 31st IEEE Conference on Decision and Control, Tucson 1992, pp. 2119-2124.

[2] F. Albertini, E. D. Sontag: Some connections between chaotic dynamical systems and control systems. In: Proc. 1st European Control Conference, Grenoble 1991, pp. 158-163.

[3] D. P. Atherton: Nonlinear Control Engineering. Van Nostrand Reinhold, London 1975.

[4] Y. Braiman, I. Goldhirsch: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66 (1991), 2545-2548. | MR | Zbl

[5] T. L. Carrol, L.M. Pecora: A circuit for studying the synchronization of a chaotic system. Internat. J. Bifur. Chaos Appl. Sci. Engng. 2 (1992), 659-667. | MR

[6] G. Chen, X. Dong: On feedback control of chaotic nonlinear dynamic systems. Internat. J. Bifur. Chaos Appl. Sci. Engng. 2 (1992), 407-412. | MR | Zbl

[7] G. Chen, X. Dong: From chaos to order- Prespectives and methodologies in controlling chaotic nonlinear dynamical systems. Systems Control and Computing, Tech. Rep. 92-07, University of Houston, Houston 1992.

[8] L. O. Chua: The genesis of Chua's circuit. Archiv fur Elektronik und Ubertragungstechnik 47 (1992), 250-257.

[9] F. Colonius, W. Klienman: On control sets and feedback for nonlinear systems. In: Preprints 2nd 1FAC Symposium NOLCOS, Bordeaux 1992, pp. 29-36.

[10] A. Dabrowski Z. Galias, M.J. Ogorzalek: A study of identification and control in a real implementation of Chua's circuit. In: Preprints 2nd IFAC Workshop on System Structure and Control, Prague 1992, pp. 278-281.

[11] W. L. Ditto S. N. Rauseo, M. L. Spano: Experimental control of Chaos. Phys. Rev. Lett. 25 (1990), 3211-3214.

[12] U. Dressier, G. Nitsche: Controlling Chaos using time delay coordinates. Phys. Rev. Lett. 68 (1992), 1-4.

[13] W. H. Fleming (ed.): Report of the panel on future directions in control theory: a mathematical perspective. Society for Industrial and Applied Mathematics, Philadelfia 1988.

[14] T. B. Fowler: Application of stochastic control techniques to chaotic nonlinear systems. IEEE Trans. Automat. Control AC-34 (1989), 201-205. | MR | Zbl

[15] R. Genesio, A. Tesi: Chaos prediction in nonlinear feedback systems. IEE Proc. D Control Theory and Applications 138 (1991), 313-320. | Zbl

[16] R. Genesio, A. Tesi: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28 (1992), 531-548. | Zbl

[17] R. Genesio, A. Tesi: A harmonic balance approach for chaos prediction: the Chua's circuit. Internat. J. Bifur. Chaos Appl. Sci. Engng. 2 (1992), 61-79. | MR

[18] R. Genesio, A. Tesi: Distortion Control of chaotic systems: the Chua's circuit. J. Circuits, Systems and Computers 5 (1993), 151-171. | MR

[19] A. Hiibler: Adaptive control of chaotic systems. Helv. Phys. Acta 62 (1989), 343-346.

[20] A. Hiibler: Modeling and control of complex systems: paradigms and applications. In: Modeling Complex Phenomena (L. Lam and V. Naroditsky, eds.), Springer-Verlag, New York 1992, pp. 5-65. | MR

[21] E. R. Hunt: Stabilizing high-period orbits in a chaotic system: the diode resonator. Phys. Rev. Lett. 57 (1992), 1953-1955.

[22] H. Hyotyniemi: Postponing Chaos using a robust stabilizer. In: Proc. 1st IFAC Symposium on Design Methods of Control Systems, Zurich 1991, pp. 568-572.

[23] E. A. Jackson: The entrainment and migration controls of multiple-attractor systems. Phys. Lett. A 151 (1990), 478-484. | MR

[24] E. A. Jackson: O: n the control of complex dynamic systems. Phys. Lett. D 50 (1991), 341-366. | MR

[25] J. H. Kim, J. Stringer (eds.): Applied Chaos. John Wiley, New York 1992. | MR | Zbl

[26] H. C. Lee., E. H. Abed: Washout filters in the bifurcation control of high alpha flight dynamics. In: Proc. 1991 IEEE Amer. Contr. Conf., Boston 1991.

[27] R. Lima, M. Pettini: Suppression of Chaos by resonant parametric perturbations. Phys. Rev. 41 (1991), 1726-1733. | MR

[28] R. Madan (ed.): Special Issue on Chua's circuit: A paradigm for chaos. Part I. J. Circuits, Systems and Computers 3 (1993), 1.

[29] R. Madan (ed.): Special Issue on Chua's circuit: A paradigm for chaos. Part II. J. Circuits, Systems and Computers 5 (1993), 2.

[30] A.I. Mees: Dynamics of Feedback Systems. John Wiley, New York 1981. | MR | Zbl

[31] M. Mohler: Nonlinear systems: Dynamics and Control. Vol. I. Prentice Hall, Englewood Cliffs 1991.

[32] F. Mossayebi H. K. Qammar, T. T. Hartley: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161 (1991), 255-262.

[33] E.C. Ott C. Grebogi, J. A. Yorke: Controlling Chaos. Phys. Rev. Lett. 64 (1990), 1196-1199. | MR

[34] B. Peng V. Petrov, and K. Showalter: Controlling Chemical Chaos. J. Phys. Chem. 95 (1991), 4957-4959.

[35] R. Rajasekar, M. Lakshmanan: Controlling of chaos in Bonhoeffer-van der Poloscillator. Internat. J. Bifur. Chaos Appl. Sci. Engng. 2 (1992), 201-204. | MR

[36] F. J. Romeiras E. Ott C. Grebogi, W. P. Dayawansa: Controlling chaotic dynamical systems. In: Proc. 1991 IEEE Amer. Control Conference, Boston 1991. | MR

[37] R. Roy T.W. Murphy, Jr. T.D. Maier Z. Gills, and E. R. Hunt: Dynamical control of a chaotic laser: experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68 (1992), 1259-1262.

[38] T. Shinbrot E. Ott C. Grebogi, J. A. Yorke: Using Chaos to direct trajectories to targets. Phys. Rev. Lett. 65 (1990), 3215-3218.

[39] D. D. Siljak: Nonlinear Systems: the Parameter Analysis and Design. John Wiley, New York 1969. | Zbl

[40] J. Singer Y. Z. Wang, H. H. Bau: Controlling a chaotic system. Phys. Rev. Lett. 66 (1991), 1123-1125.

[41] S. Sinha R. Ramaswamy, J. S. Rao: A: daptive control in nonlinear dynamics. Phys. Lett. D 43 (1990), 118-128. | MR

[42] T. Taylor: Chaos and its applications in control. In: Proc. 31st IEEE Conference on Decision and Control, Tucson 1992, pp. 2102-2106.

[43] A. Vaněček: Strongly nonlinear and other control systems. Problems Control Inform. Theory 20 (1991), 3-12. | MR

[44] M. Vidyasagar: Nonlinear System Analysis. Prentice-Hall, Englewood Cliffs 1978.

[45] T. L. Vincent, J. Yu: Control of a chaotic system. Dynamics and Control 1 (1991), 35-52. | MR | Zbl

[46] H. O. Wang, E. H. Abed: Bifurcation control of chaotic dynamical systems. In: Preprints 2nd IFAC Symposium NOLCOS, Bordeaux, France, 1992.