Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability
Kybernetika, Tome 29 (1993) no. 5, pp. 431-438 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49K30, 49N10, 93C15, 93C35, 93D99
@article{KYB_1993_29_5_a4,
     author = {Geerts, Ton},
     title = {Free end-point linear-quadratic control subject to implicit continuous- time systems: {Necessary} and sufficient conditions for solvability},
     journal = {Kybernetika},
     pages = {431--438},
     year = {1993},
     volume = {29},
     number = {5},
     mrnumber = {1264876},
     zbl = {0807.93033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a4/}
}
TY  - JOUR
AU  - Geerts, Ton
TI  - Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability
JO  - Kybernetika
PY  - 1993
SP  - 431
EP  - 438
VL  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a4/
LA  - en
ID  - KYB_1993_29_5_a4
ER  - 
%0 Journal Article
%A Geerts, Ton
%T Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability
%J Kybernetika
%D 1993
%P 431-438
%V 29
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a4/
%G en
%F KYB_1993_29_5_a4
Geerts, Ton. Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability. Kybernetika, Tome 29 (1993) no. 5, pp. 431-438. http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a4/

[1] D. J. Bender, A. J. Laub: The linear-quadratic optimal regulator for descriptor systems. IEEE Trans. Automat. Control AC-32 (1987), 672-688. | MR | Zbl

[2] D. Cobb: Descriptor variable systems and optimal state regulation. IEEE Trans. Automat. Control AC-28 (19S3), 601-611. | MR

[3] A. H. W. Geerts, M. L. J. Hautus: The output-stabilizable subspace and linear optimal control. In: Robust Control of Linear Systems and Nonlinear Control, Progress in Systems and Control Theory, Vol. 4, Birkhauser, Boston 1990, pp. 113-120. | MR | Zbl

[4] T. Geerts: A necessary and sufficient condition for solvability of the linear-quadratic control problem without stability. Systems Control Lett. 11 (1988), 47-51. | MR | Zbl

[5] T. Geerts: All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost. Linear Algebra Appl. 116 (1989), 135-181. | MR | Zbl

[6] T. Geerts: Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case. Linear Algebra Appl. 181 (1993), 111-130. | MR | Zbl

[7] T. Geerts: Invariant subspaces and invertibility properties for singular systems: The general case. Linear Algebra Appl. 183 (1993), 61-88. | MR | Zbl

[8] T. Geerts: Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems. Circuits, Systems Signal Process., to appear. | MR | Zbl

[9] M. L. J. Hautus: The formal Laplace transform for smooth linear systems. (Lecture Notes in Economics and Mathematical Systems 131.) Springer-Verlag, Berlin 1976, pp. 29-46. | MR | Zbl

[10] M. L. J. Hautus, L. M. Silverman: System structure and singular control. Linear Algebra Appl. 50 (1983), 369-402. | MR | Zbl

[11] L. Schwartz: Theorie des Distributions. Hermann, Paris 1978. | MR | Zbl

[12] G. C. Verghese B.C. Levy, T. Kailath: A generalized state-space for singular systems. IEEE Trans. Automat. Control AC-26 (1981), 811-831. | MR

[13] J. C. Willems A. Kitapci, L.M. Silverman: Singular optimal control: A geometric approach. SIAM J. Control Optim. 24 (1986), 323-337. | MR