@article{KYB_1993_29_5_a11,
author = {Rocha, Paula},
title = {MA representation of $l_2$ {2D} systems},
journal = {Kybernetika},
pages = {511--515},
year = {1993},
volume = {29},
number = {5},
mrnumber = {1264883},
zbl = {0810.93014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a11/}
}
Rocha, Paula. MA representation of $l_2$ 2D systems. Kybernetika, Tome 29 (1993) no. 5, pp. 511-515. http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a11/
[1] D. Goodman: Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Trans. Circuits and Systems CAS-24 (1977), 4. | MR
[2] C. Heij: Deterministic Identification of Dynamical Systems. Springer-Verlag, Heidelberg 1989. | MR | Zbl
[3] B. Levy: 2-D Polynomial and Rational Matrices, and Their Applications for the Modeling of 2-D Dynamical Systems. Ph. D. Thesis, Technical Report No. M735-11, Information Systems Laboratory, Department of Electrical Engineering, Stanford University 1981.
[4] P. Rocha, J. C. Willems: State for 2D systems. Linear Algebra Appl. 122/123/124 (1989), 1003-1038. | MR
[5] P. Rocha, J. C. Willems: Controllability of 2D systems. IEEE Trans. Automat. Control AC-S6 (1991), 413-423. | MR
[6] P. Rocha: Representation of noncausal 2D systems. In: New Trends in Systems Theory (G. Conte, A.M. Perdon and B. Wyman, eds.), Progress in Systems and Control Theory, Vol. 7, 1991. | Zbl
[7] J. C. Willems: From time series to linear system. Part I. Automatica 22 (1986), 5, 561-580. | MR