MA representation of $l_2$ 2D systems
Kybernetika, Tome 29 (1993) no. 5, pp. 511-515 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93A10, 93B28
@article{KYB_1993_29_5_a11,
     author = {Rocha, Paula},
     title = {MA representation of $l_2$ {2D} systems},
     journal = {Kybernetika},
     pages = {511--515},
     year = {1993},
     volume = {29},
     number = {5},
     mrnumber = {1264883},
     zbl = {0810.93014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a11/}
}
TY  - JOUR
AU  - Rocha, Paula
TI  - MA representation of $l_2$ 2D systems
JO  - Kybernetika
PY  - 1993
SP  - 511
EP  - 515
VL  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a11/
LA  - en
ID  - KYB_1993_29_5_a11
ER  - 
%0 Journal Article
%A Rocha, Paula
%T MA representation of $l_2$ 2D systems
%J Kybernetika
%D 1993
%P 511-515
%V 29
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a11/
%G en
%F KYB_1993_29_5_a11
Rocha, Paula. MA representation of $l_2$ 2D systems. Kybernetika, Tome 29 (1993) no. 5, pp. 511-515. http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a11/

[1] D. Goodman: Some stability properties of two-dimensional linear shift-invariant digital filters. IEEE Trans. Circuits and Systems CAS-24 (1977), 4. | MR

[2] C. Heij: Deterministic Identification of Dynamical Systems. Springer-Verlag, Heidelberg 1989. | MR | Zbl

[3] B. Levy: 2-D Polynomial and Rational Matrices, and Their Applications for the Modeling of 2-D Dynamical Systems. Ph. D. Thesis, Technical Report No. M735-11, Information Systems Laboratory, Department of Electrical Engineering, Stanford University 1981.

[4] P. Rocha, J. C. Willems: State for 2D systems. Linear Algebra Appl. 122/123/124 (1989), 1003-1038. | MR

[5] P. Rocha, J. C. Willems: Controllability of 2D systems. IEEE Trans. Automat. Control AC-S6 (1991), 413-423. | MR

[6] P. Rocha: Representation of noncausal 2D systems. In: New Trends in Systems Theory (G. Conte, A.M. Perdon and B. Wyman, eds.), Progress in Systems and Control Theory, Vol. 7, 1991. | Zbl

[7] J. C. Willems: From time series to linear system. Part I. Automatica 22 (1986), 5, 561-580. | MR