External reachability (reachability with pole assignment by p. d. feedback) for implicit descriptions
Kybernetika, Tome 29 (1993) no. 5, pp. 499-510 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93B03, 93B05, 93B51, 93B55, 93C05
@article{KYB_1993_29_5_a10,
     author = {Bonilla, Mois\'es E. and Malabre, Michel},
     title = {External reachability (reachability with pole assignment by p. d. feedback) for implicit descriptions},
     journal = {Kybernetika},
     pages = {499--510},
     year = {1993},
     volume = {29},
     number = {5},
     mrnumber = {1264882},
     zbl = {0802.93025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a10/}
}
TY  - JOUR
AU  - Bonilla, Moisés E.
AU  - Malabre, Michel
TI  - External reachability (reachability with pole assignment by p. d. feedback) for implicit descriptions
JO  - Kybernetika
PY  - 1993
SP  - 499
EP  - 510
VL  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a10/
LA  - en
ID  - KYB_1993_29_5_a10
ER  - 
%0 Journal Article
%A Bonilla, Moisés E.
%A Malabre, Michel
%T External reachability (reachability with pole assignment by p. d. feedback) for implicit descriptions
%J Kybernetika
%D 1993
%P 499-510
%V 29
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a10/
%G en
%F KYB_1993_29_5_a10
Bonilla, Moisés E.; Malabre, Michel. External reachability (reachability with pole assignment by p. d. feedback) for implicit descriptions. Kybernetika, Tome 29 (1993) no. 5, pp. 499-510. http://geodesic.mathdoc.fr/item/KYB_1993_29_5_a10/

[1] A. Banaszuk M. Kociecki, K. M. Przyluski: Remarks on the theory of implicit linear discrete-time systems. In: Proc. Internat. Symp. on Singular Systems, Atlanta 1987, pp. 44-47.

[2] P. Bernhard: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20 (1982), 5, 612-633. | MR | Zbl

[3] M. Bonilla: Etude de proprietes structurelles des systemes singuliers vues en particulier a partir de l'algorithme d'inversion. These de Doctorat, Universite de Nantes et E.N.S.M., Nantes 1991.

[4] M. Bonilla M. Fonseca, M. Malabre: Implementing non proper control laws for proper systems. In: Proc. Internat. Symp. on Implicit and Nonlinear Systems, SINS'92 (F. Lewis, ed.), Ft. Worth 1992, pp. 163-169.

[5] M. Bonilla G. Lebret, M. Malabre: Some robust control via implicit descriptions. In: Proc. 2nd Internat. Symp. on Implicit and Robust Systems, ISIRS'92, Warsaw 1991, pp. 37-40.

[6] M. Bonilla, M. Malabre: One side invertibility for implicit descriptions. In: Proc. 29th IEEE-CDC, Vol. 6, Hawaii 1990, pp. 3601-3602.

[7] M. Bonilla, M. Malabre: Variable structure systems via implicit descriptions. In: Proc. 1st European Control Conference, Vol. 1, Grenoble, Hermes 1991, pp. 403-408.

[8] M. Bonilla, M. Malabre: Redundant and non observable spaces Iot implicit descriptions. In: Proc. 30th IEEE-CDC, Vol. 2, Brighton 1991, pp. 1425-1430.

[9] M. Bonilla, M. Malabre: Geometric characterization of Lewis' Structure Algorithm. In: Proc. 2nd Int. Symp. on Implicit and Robust Systems, ISIRS'91, Warsaw 1991, pp. 41-46.

[10] M. Bonilla, M. Malabre: External minimality for implicit description. Internal Report, LAN-ENSM, No. 90.02, 1990.

[11] M. Bonilla M. Malabre, J. A. Cheang Wong: On the use of derivators (and approximations) for solving basic control problems. Submitted.

[12] D. Cobb: Controllability, observability and duality in singular systems. IEEE Trans. Automat. Control AC-29 (1984), 12, 1076-1082. | MR

[13] H. Frankowska: On controllability and observability of implicit systems. Systems Control Lett. 14 (1990), 219-225. | MR | Zbl

[14] F. R. Gantmacher: The Theory of Matrices. Vol. II. Chelsea, New York 1959.

[15] J. Grimm: Application de la theorie des systemes implicites a l'inversion des systemes. In: Analysis and Optimization of Systems: Proceedings of the Sixth Internatational Conference on Analysis and Optimization of Systems (Lecture Notes in Control and Information Sciences 63), Springer-Verlag, Berlin 1984, pp. 142-156. | MR | Zbl

[16] S. Jaffe, N. Karcanias: Matrix pencil characterization of almost (A, B)-invariant subspaces: A classification of geometric concepts. Internat. J. Control 33 (1981), 1, 51-93. | MR | Zbl

[17] M. Kuijper: Descriptor representations without direct feedthrough term. CWI, BS-R9103, Amsterdam 1991. | MR

[18] M. Kuijper, J. M. Schumacher: Realization of autoregressive equations in pencil and descriptor form. SIAM J. Control Optim. 28 (1990), 5, 1162-1189. | MR | Zbl

[19] G. Lebret: Contribution a l'etude des systemes lineaires generalises: approches geometrique et structurelle. These de Doctorat, Univ. de Nantes et E.C.N, Nantes 1991.

[20] F. Lewis: A tutorial on the properties of linear time-invariant singular systems. Presented at the IFAC Workshop on System Structure and Control, State Space and Polynomial Methods, Prague 1989. Automatica, to appear.

[21] F. Lewis, G. Beauchamp: Computation of subspaces for singular systems. In: Proc. MTNS'87, Phoenix 1987.

[22] J. J. Loiseau K. Ozcaldiran M. Malabre, N. Karcanias: Feedback canonical forms of singular systems. Kybernetika 27(1991), 4, 289-305. | MR

[23] M. Malabre: Generalized linear systems: geometric and structural approaches. Linear Algebra Appl. (1980), 122/123/124, 591-621. | MR

[24] M. Malabre: On infinite zeros for generalized systems. In: Proc. MTNS'89, in PSCT3, Birkhauser, Boston, pp. 271-278. | MR

[25] K. Ozcaldiran: A geometric characterization of the reachable and controllable sub-spaces of descriptor systems. Circuits Systems Signal Process. 5 (1986), 1, 37-48. | MR

[26] K. Ozcaldiran: Geometric notes on descriptor systems. In: Proc. 26th IEEE-CDC, Los Angeles 1987.

[27] K. Ozcaldiran: A complete classification of controllable singular systems. Submitted.

[28] G. C. Verghese B. C. Levy, T. Kailath: A generalized state-space for singular systems. IEEE Trans. Automat. Control AC-26 (1981), 4, 811-831. | MR

[29] W. M. Wonham: Linear Multivariate Control: a Geometric Approach. Springer-Verlag, New York 1979. | MR