Discriminability of robust test under heavy contamination
Kybernetika, Tome 29 (1993) no. 4, pp. 379-390 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F03, 62F35
@article{KYB_1993_29_4_a4,
     author = {Rubio, Asunci\'on Maria and V{\'\i}\v{s}ek, Jan \'Amos},
     title = {Discriminability of robust test under heavy contamination},
     journal = {Kybernetika},
     pages = {379--390},
     year = {1993},
     volume = {29},
     number = {4},
     mrnumber = {1247884},
     zbl = {0850.62327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a4/}
}
TY  - JOUR
AU  - Rubio, Asunción Maria
AU  - Víšek, Jan Ámos
TI  - Discriminability of robust test under heavy contamination
JO  - Kybernetika
PY  - 1993
SP  - 379
EP  - 390
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a4/
LA  - en
ID  - KYB_1993_29_4_a4
ER  - 
%0 Journal Article
%A Rubio, Asunción Maria
%A Víšek, Jan Ámos
%T Discriminability of robust test under heavy contamination
%J Kybernetika
%D 1993
%P 379-390
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a4/
%G en
%F KYB_1993_29_4_a4
Rubio, Asunción Maria; Víšek, Jan Ámos. Discriminability of robust test under heavy contamination. Kybernetika, Tome 29 (1993) no. 4, pp. 379-390. http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a4/

[1] M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, 1964. | MR | Zbl

[2] O. Barndorff-Nielsen, D. R. Cox: Edgeworth and saddle-point approximations with statistical applications. J. Roy. Statist. Soc. Ser. B 1 (1979), 3, 279-312. | MR | Zbl

[3] C. A. Field, E. M. Ronchetti: Small Sample Asymptotics. A manuscript of a book, 1988.

[4] F. R. Hampel: The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 60 (1974), 364, 383-393. | MR | Zbl

[5] F. R. Hampel P. J. Rousseeuw E. M. Ronchetti, W. A. Stahel: Robust Statistics - The Approach Based on Influence Function. J. Wiley, New York 1986. | MR

[6] P. J. Huber: Robust estimation of a location parameter. Ann. Math. Statist. 35 (1964), 73-101. | MR | Zbl

[7] P. J. Huber, V. Strassen: Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Statist. 1 (1973), 251-263. | MR | Zbl

[8] D. Lambert: Influence functions for testing. J. Amer. Statist. Assoc. 76 (1981), 375, 649-657. | Zbl

[9] H. Rieder: Least favorable pairs for special capacities. Ann. Statist. 5 (1977), 5, 909-921. | MR | Zbl

[10] G. G. Roussas: Contiguity of Probability Measures. Cambridge Univ. Press, Cambridge 1972. Russian translation: Izdatelstvo Mir, Moscow 1975. | MR | Zbl

[11] A. Rubio L. Aguilar, J. A. Víšek: Testing difference of models. Computational Statistics 8 (1993), 57-70. | MR

[12] A. Rubio, J. A. Víšek: Estimating the contamination level of data in the framework of linear regression analysis. Questtio 1993 (to appear). | MR

[13] J. A. Víšek: On second order efficiency of a robust test and approximations of its error probabilities. Kybernetika 19 (1983), 3, 387-407. | MR

[14] J. A. Víšek: Estimating contamination level. In: Proc. Fifth Pannonian Symposium on Mathematical Statistics, Visegrad, Hungary 1985, pp. 401-414. | MR

[15] J. A. Víšek: Estimation of contamination level in the model of contaminacy with general neighbourhoods. Kybernetika 25 (1989), 278-297. | MR