Null controllability of nonlinear infinite neutral system
Kybernetika, Tome 29 (1993) no. 4, pp. 325-338 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K35, 34K40, 93B05, 93C15, 93C30
@article{KYB_1993_29_4_a1,
     author = {Onwuatu, Jerry U.},
     title = {Null controllability of nonlinear infinite neutral system},
     journal = {Kybernetika},
     pages = {325--338},
     year = {1993},
     volume = {29},
     number = {4},
     mrnumber = {1247881},
     zbl = {0925.93080},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a1/}
}
TY  - JOUR
AU  - Onwuatu, Jerry U.
TI  - Null controllability of nonlinear infinite neutral system
JO  - Kybernetika
PY  - 1993
SP  - 325
EP  - 338
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a1/
LA  - en
ID  - KYB_1993_29_4_a1
ER  - 
%0 Journal Article
%A Onwuatu, Jerry U.
%T Null controllability of nonlinear infinite neutral system
%J Kybernetika
%D 1993
%P 325-338
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a1/
%G en
%F KYB_1993_29_4_a1
Onwuatu, Jerry U. Null controllability of nonlinear infinite neutral system. Kybernetika, Tome 29 (1993) no. 4, pp. 325-338. http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a1/

[1] K. J. Arrow: Production and Capital. Collected papers of Kenneth Arrow, the Beknop Prec. of Harvard University Press, Cambridge, Mass. 1985.

[2] R. Brayton: Nonlinear oscillations in a distributed network. Quart. Appl. Math. 24 (1976), 239-301.

[3] E. N. Chukwu: On the null controllability of nonlinear systems with retarded control. J. Math. Anal. Appl. 76 (1980), 283-396. | MR

[4] E. N. Chukwu: Global asymptotic behaviour of functional differential equations of the neutral type. Nonlinear Analysis, Theoгy, Methods and Appl. 5 (1981), 5, 853-872. | MR | Zbl

[5] R. D. Driver: A functional differential system of neutral type in a two-body problem of classical electrodynamics. In: Nonlinear Differential Equations and Nonlinear Mechanics, Academic Press, New York 1963. | MR

[6] L. E. Elsgoltz: Qualitative Methods in Mathematical Analysis. Tгans. Math. Mono, 12, American Math. Soc. 1964. | MR

[7] R. Gabasov, F. M. Kirrilova: The Quantitative Theory of Optimal Processes. Marcel Dekker, New York 1976.

[8] R. D. Gahl: Controllability of nonlinear systems of neutral type. J. Math. Anal. Appl. 65 (1978), 33-42. | MR | Zbl

[9] J. K. Halle, M. A. Cruz: Existence, uniqueness and continuous dependence for hederitary systems. Ann. Mat. Pura Appl. 85 (1970), 63-82.

[10] J. K. Hale: Functional differential equations with infmite delays. J. Math. Anal. Appl. 48 (1974), 276-283. | MR

[11] J. K. Hale: Theory of Functional Differential equations. Spгinger-Verlag, New York 1977. | MR | Zbl

[12] H. Hermes, J. P. LaSalle: Functional Analysis and Time Optimal Control. Academic Press, New York 1969. | MR | Zbl

[13] M. Kalecki: A macrodynamic theory of business cycles. Econometrica 3 (1935), 327-344.

[14] L. V. Kantorovich, G. P. Akilov: Functional Analysis. Pergamon Press, Oxford 1982. | MR | Zbl

[15] G. Knowles: An Introduction to Applied Optimal Control. Academic Press, New York 1981. | MR | Zbl

[16] J. U. Onwuatu: On the null contгollability in function-space of nonlinear system of neutral functional differential equations with limited control. J. Optim. Theory Appl. 42 (1984), 397-420. | MR

[17] G. Stépán: Retarded Dynamical Systems: Stability and Characteгistic Functions. John Wiley, New York 1989. | MR

[18] A. S. C. Sinha: Null controllability of nonlinear infinite delay systems with restrained controls. Internat. J. Control 42 (1985), 735-741. | MR | Zbl