@article{KYB_1993_29_4_a0,
author = {Luk\v{s}an, Ladislav},
title = {Inexact trust region method for large sparse nonlinear least squares},
journal = {Kybernetika},
pages = {305--324},
year = {1993},
volume = {29},
number = {4},
mrnumber = {1247880},
zbl = {0806.65060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a0/}
}
Lukšan, Ladislav. Inexact trust region method for large sparse nonlinear least squares. Kybernetika, Tome 29 (1993) no. 4, pp. 305-324. http://geodesic.mathdoc.fr/item/KYB_1993_29_4_a0/
[1] G. Golub, W. Kahan: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2 (1965), 205-224. | MR | Zbl
[2] J. J. More B. S. Garbow, K. E. Hillstrom: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. | MR
[3] J. E. Dennis, H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Vlues. Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.
[4] C. C. Paige: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal. 11 (1974), 197-209. | MR | Zbl
[5] C. C. Paige, M. A. Saunders: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8 (1982), 43-71. | MR | Zbl
[6] M. J. D. Powell: Convergence properties of a class of minimization algoritms. In: Non-linear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1975. | MR
[7] G. A. Shultz R. B. Schnabel, R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985), 47-67. | MR
[8] T. Steihaug: The conjugate gradient method and trust regions in large-scale optimization. SIAM J. Numer. Anal. 20 (1983), 626-637. | MR | Zbl