A robustness result for a von Kármán plate
Kybernetika, Tome 29 (1993) no. 3, pp. 291-304 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 73K10, 73K12, 73K50, 74K20, 74M05, 93B35, 93B52, 93C20, 93D15
@article{KYB_1993_29_3_a8,
     author = {Bradley, Mary E. and Lasiecka, Irena},
     title = {A robustness result for a von {K\'arm\'an} plate},
     journal = {Kybernetika},
     pages = {291--304},
     year = {1993},
     volume = {29},
     number = {3},
     mrnumber = {1231874},
     zbl = {0787.73050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a8/}
}
TY  - JOUR
AU  - Bradley, Mary E.
AU  - Lasiecka, Irena
TI  - A robustness result for a von Kármán plate
JO  - Kybernetika
PY  - 1993
SP  - 291
EP  - 304
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a8/
LA  - en
ID  - KYB_1993_29_3_a8
ER  - 
%0 Journal Article
%A Bradley, Mary E.
%A Lasiecka, Irena
%T A robustness result for a von Kármán plate
%J Kybernetika
%D 1993
%P 291-304
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a8/
%G en
%F KYB_1993_29_3_a8
Bradley, Mary E.; Lasiecka, Irena. A robustness result for a von Kármán plate. Kybernetika, Tome 29 (1993) no. 3, pp. 291-304. http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a8/

[1] M. E. Bradley: Well-posedness and regularity for a von Karman plate. (to appear).

[2] M. E. Bradley, I. Lasiecka: Global decay rates for the solutions to a von Karman plate without geometric conditions. J. Math. Anal. Appl. (to appear). | MR | Zbl

[3] M. E. Bradley, I. Lasiecka: Local exponential stabilization of a nonlinearly perturbed von Karman plate. J. Nonlinear Analysis: Techniques, Methods and Applications 18 (1992), 4, 333-343. | MR

[4] J. Lagnese: Boundary Stabilization of Thin Plates. SIAM, Philadelphia 1989. | MR | Zbl

[5] J. Lagnese: Local controllability of dynamic von Karman plates. Control Cybernet., 1990. | MR

[6] I. Lasiecka, R. Triggiani: Sharp trace estimates of solutions of Kirchoff and Euler-Bernoulli equations. Appl. Math. Optim. (to appear). | MR