@article{KYB_1993_29_3_a3,
author = {Chleboun, Jan},
title = {Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem},
journal = {Kybernetika},
pages = {231--248},
year = {1993},
volume = {29},
number = {3},
mrnumber = {1231869},
zbl = {0805.49024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a3/}
}
Chleboun, Jan. Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem. Kybernetika, Tome 29 (1993) no. 3, pp. 231-248. http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a3/
[1] D. Begis, R. Glowinski: Application de la methode des elements finis a l'approximation d'un probleme de domaine optimal. Appl. Math. Optim. 2 (1975), 130-169. | MR | Zbl
[2] J. Chleboun: Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem. Thesis (in Czech). Czechoslovak Academy of Sciences, Mathematical Institute, Prague 1991.
[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam 1978. | MR | Zbl
[4] M. Crouzeix, P. A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numer. 7(1973), 33-75. | MR
[5] E. J. Haug K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando - London 1986. | MR
[6] I. Hlaváček: Optimization of the domain in elliptic problems by the dual finite element method. Apl. Mat. 30 (1985), 50-72. | MR
[7] I. Hlaváček, R. Makinen: On the numerical solution of axisymmetric domain optimization problems. Appl. Math. 56 (1991), 284-304. | MR
[8] S. G. Mikhlin: The Problem of the Minimum of a Quadratic Functional. Holden-Day, San Francisco 1965. | MR | Zbl
[9] P. A. Raviart, J. M. Thomas: Primal hybrid finite element method for 2nd order elliptic equations. Math. Comp. 31 (1977), 391-413. | MR