Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem
Kybernetika, Tome 29 (1993) no. 3, pp. 231-248 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35J85, 49Q10
@article{KYB_1993_29_3_a3,
     author = {Chleboun, Jan},
     title = {Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem},
     journal = {Kybernetika},
     pages = {231--248},
     year = {1993},
     volume = {29},
     number = {3},
     mrnumber = {1231869},
     zbl = {0805.49024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a3/}
}
TY  - JOUR
AU  - Chleboun, Jan
TI  - Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem
JO  - Kybernetika
PY  - 1993
SP  - 231
EP  - 248
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a3/
LA  - en
ID  - KYB_1993_29_3_a3
ER  - 
%0 Journal Article
%A Chleboun, Jan
%T Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem
%J Kybernetika
%D 1993
%P 231-248
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a3/
%G en
%F KYB_1993_29_3_a3
Chleboun, Jan. Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem. Kybernetika, Tome 29 (1993) no. 3, pp. 231-248. http://geodesic.mathdoc.fr/item/KYB_1993_29_3_a3/

[1] D. Begis, R. Glowinski: Application de la methode des elements finis a l'approximation d'un probleme de domaine optimal. Appl. Math. Optim. 2 (1975), 130-169. | MR | Zbl

[2] J. Chleboun: Hybrid variational formulation of an elliptic state equation applied to an optimal shape problem. Thesis (in Czech). Czechoslovak Academy of Sciences, Mathematical Institute, Prague 1991.

[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam 1978. | MR | Zbl

[4] M. Crouzeix, P. A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numer. 7(1973), 33-75. | MR

[5] E. J. Haug K. K. Choi, V. Komkov: Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando - London 1986. | MR

[6] I. Hlaváček: Optimization of the domain in elliptic problems by the dual finite element method. Apl. Mat. 30 (1985), 50-72. | MR

[7] I. Hlaváček, R. Makinen: On the numerical solution of axisymmetric domain optimization problems. Appl. Math. 56 (1991), 284-304. | MR

[8] S. G. Mikhlin: The Problem of the Minimum of a Quadratic Functional. Holden-Day, San Francisco 1965. | MR | Zbl

[9] P. A. Raviart, J. M. Thomas: Primal hybrid finite element method for 2nd order elliptic equations. Math. Comp. 31 (1977), 391-413. | MR