Convex cones in finite-dimensional real vector spaces
Kybernetika, Tome 29 (1993) no. 2, pp. 180-200 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46B40, 52A07, 52A20, 52B11, 90C27
@article{KYB_1993_29_2_a6,
     author = {Studen\'y, Milan},
     title = {Convex cones in finite-dimensional real vector spaces},
     journal = {Kybernetika},
     pages = {180--200},
     year = {1993},
     volume = {29},
     number = {2},
     mrnumber = {1227751},
     zbl = {0797.52006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a6/}
}
TY  - JOUR
AU  - Studený, Milan
TI  - Convex cones in finite-dimensional real vector spaces
JO  - Kybernetika
PY  - 1993
SP  - 180
EP  - 200
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a6/
LA  - en
ID  - KYB_1993_29_2_a6
ER  - 
%0 Journal Article
%A Studený, Milan
%T Convex cones in finite-dimensional real vector spaces
%J Kybernetika
%D 1993
%P 180-200
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a6/
%G en
%F KYB_1993_29_2_a6
Studený, Milan. Convex cones in finite-dimensional real vector spaces. Kybernetika, Tome 29 (1993) no. 2, pp. 180-200. http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a6/

[1] S. A. Ashmanov: Linear Programming. (in Russian). Nauka, Moscow 1981. | Zbl

[2] A. Brøndsted: An Introduction to Convex Polytopes. Springer-Verlag, New York - Berlin - Heidelberg - Tokyo 1983. Russian translation: Mir, Moscow 1988. | MR

[3] V. Chvatal: Linear Programming. W. H. Freeman, New York - San Francisco 1983. | MR | Zbl

[4] P. R. Halmos: Finite-Dimensional Vector Spaces. Springer-Verlag, New York - Heidelberg - Berlin 1974. | MR | Zbl

[5] J. L. Kelley: General Topology. D. van Nostrand, London - New York - Toronto 1957. | MR

[6] J. L. Kelley, I. Namioka: Linear Topological Spaces. D. van Nostrand, Princeton - Toronto - London - Melbourne 1963. | MR | Zbl

[7] R. T. Rockafellar: Convex Analysis. Princeton Univ. Press, Princeton, N.J. 1970. Russian translation: Mir, Moscow 1973. | MR | Zbl

[8] M. Studený: Description of structures of stochastic conditional independence by means of faces and imsets. Part 1: Introduction and basic concepts, Part 2: Basic theory, Part 3: Examples of use and appendices. Internat. J. Gen. Systems (submitted).

[9] H. Weyl: Elementare Theorie der konvexen Polyeder. (in German). Commentarii Mathematici Helvetici 7 (1934/5), 290-306. | MR