Existence, uniqueness and evaluation of log-optimal investment portfolio
Kybernetika, Tome 29 (1993) no. 2, pp. 105-120 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 90A09, 90D40, 91B28
@article{KYB_1993_29_2_a0,
     author = {Vajda, Igor and \"Osterreicher, Ferdinand},
     title = {Existence, uniqueness and evaluation of log-optimal investment portfolio},
     journal = {Kybernetika},
     pages = {105--120},
     year = {1993},
     volume = {29},
     number = {2},
     mrnumber = {1227745},
     zbl = {0799.90013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a0/}
}
TY  - JOUR
AU  - Vajda, Igor
AU  - Österreicher, Ferdinand
TI  - Existence, uniqueness and evaluation of log-optimal investment portfolio
JO  - Kybernetika
PY  - 1993
SP  - 105
EP  - 120
VL  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a0/
LA  - en
ID  - KYB_1993_29_2_a0
ER  - 
%0 Journal Article
%A Vajda, Igor
%A Österreicher, Ferdinand
%T Existence, uniqueness and evaluation of log-optimal investment portfolio
%J Kybernetika
%D 1993
%P 105-120
%V 29
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a0/
%G en
%F KYB_1993_29_2_a0
Vajda, Igor; Österreicher, Ferdinand. Existence, uniqueness and evaluation of log-optimal investment portfolio. Kybernetika, Tome 29 (1993) no. 2, pp. 105-120. http://geodesic.mathdoc.fr/item/KYB_1993_29_2_a0/

[1] A. R. Barron L. Gyorfi, E. van der Meulen: Distribution estimation consistent in total variation and in two types of information divergence. IEEE Trans. Inform. Theory 38 (1992), 1437-1454. | MR

[2] L. Breiman: Optimal gambling systems for favouralbe games. In: Fourth Berkeley Symp. Math. Statist. Probab., Vol. I, Univ. Calif. Press, Berkeley 1961, pp. 65-78. | MR

[3] T. M. Cover: An algorithm for maximizing expected log investment return. IEEE Trans. Inform. Theory 30 (1984), 369-373. | MR | Zbl

[4] T. M. Cover: Universal portfolios. Mathematical Finance 16 (1991), 876-898. | MR | Zbl

[5] T. M. Cover, J. A. Thomas: Elements of Information Theory. Wiley, New York 1991. | MR | Zbl

[6] J. Kelly: A new interpretation of information rate. Bell System Tech. J. 35 (1956), 917-926. | MR

[7] H. A. Latane: Criteria for choice among risky ventures. Political Economy 38 (1959), 145-155.

[8] G. Morvai: Empirical log-optimal portfolio selection. Problems Control Inform. Theory 20 (1991), 453-464. | MR | Zbl

[9] G. Morvai: Portfolio choice based on the empirical distribution. Kybernetika 25(1992), 484-493. | MR | Zbl

[10] J. Pfanzagl: On the measurability and consistency of minimum contrast estimators. Metrika U (1969), 249-272.

[11] R. T. Rockafellar: Convex Analysis. Princeton Univ. Press, Princeton, N.J. 1970. | Zbl

[12] P. A. Samuelson: The 'fallacy' of maximizing the geometric mean in long sequences of investing or gambling. Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2493-2496. | MR | Zbl

[13] P. A. Samuelson: Why we should not make mean log of wealth big though years to act are long. Journal of Banking and Finance 3 (1979), 305-307.

[14] S. van deGeer: The method of sieves and minimum contrast estimators. 20th European Meeting of Statisticians, Programme & Abstracts, University of Bath, September 1992, p. 243.