@article{KYB_1993_29_1_a4,
author = {Cipra, Tom\'a\v{s} and Rubio, Asunci\'on and Canal, Jos\'e Luis},
title = {Recursive estimation in autoregressive models with additive outliers},
journal = {Kybernetika},
pages = {62--72},
year = {1993},
volume = {29},
number = {1},
mrnumber = {1227742},
zbl = {0789.62066},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_1_a4/}
}
Cipra, Tomáš; Rubio, Asunción; Canal, José Luis. Recursive estimation in autoregressive models with additive outliers. Kybernetika, Tome 29 (1993) no. 1, pp. 62-72. http://geodesic.mathdoc.fr/item/KYB_1993_29_1_a4/
[1] D. F. Andrews, al.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton 1972. | MR | Zbl
[2] K. Campbel: Recursive computation of M-estimates for the parameters of a finite autoregressive process. Ann. Statist. 10 (1982), 442-453. | MR
[3] T. Cipra: Note on approximate non-Gaussian filtering with nonlinear observation relation. Comment. Math. Univ. Carolinae 31 (1990), 601-605. | MR | Zbl
[4] T. Cipra, J. Uanousek: Robust Filtering and Estimation in Autoregressive Models. (in Czech). Research Report, Institute of Hygiene and Epidemiology, Prague 1989.
[5] T. Cipra, R. Romera: Robust Kalman filter and its application in tune series analysis. Kybernetika 27 (1991), 481-494, | MR
[6] T. Cipra, R. Romera: Recursive time series methods in L1-norm. In: L1-Statistical Analysis and Related Methods (Y. Dodge, ed.), North Holland, Amsterdam 1992, pp. 233-243. | MR
[7] T. Cipra, A. Rubio: Kalman filter with a non-linear non-Gaussian observation relation. Trabajos de Estadi'stica 6(1991), 111-119. | Zbl
[8] L. Denby, R. D. Martin: Robust estimation of the first-order autoregressive parameter. J. Amer. Statist. Assoc. 74 (1979), 140-146. | Zbl
[9] L. Fahrmeier: Rekursive Algorithmen fur Zeitreihenmodelle. Vandenhoeck und Ruprecht, Gottingen 1981. | MR
[10] S. Hillmer: Monitoring and adjusting forecasts in the presence of additive outliers. J. Forecasting 3 (1984), 205-215.
[11] P. J. Huber: Robust Statistics. J. Wiley, New York 1981. | MR | Zbl
[12] A. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. | Zbl
[13] B. Kleiner R. D. Martin, D. J. Thomson: Robust estimation of power spectra. J. Roy. Statist. Soc. Ser. B 41 (1979), 313-351. | MR
[14] J. Ledolter: The effect of additive outliers on the forecasts from ARIMA models. Internat. J. Forecasting 5 (1989), 1-10.
[15] L. Ljung, T. Soderstrom: Theory and Practice of Recursive Identification. MIT Press, Cambridge, Massachusetts 1983. | MR
[16] R. D. Martin: Robust estimation for time series autoregressions. In: Robustness in Statistics (R. L. Launer and G.N. Wilkinson, eds.), Academic Press, New York 1979, pp. 147-176.
[17] R. D. Martin: Approximate conditional-mean type smoothers and interpolators. In: Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, eds.), Springer, New York 1979, pp. 117-143. | MR | Zbl
[18] R. D. Martin: Robust estimation of autoregressive models. In: Directions in Time Series (D. R. Brillinger and G. C. Tiao, eds.), Inst. Math. Statist. Publications, Hayward, CA 1980, pp. 228-254. | MR | Zbl
[19] R. D. Martin: Robust methods for time series. In: Applied Time Series II (D. F. Findley, ed.), Academic Press, New York 1981, pp. 683-759. | MR | Zbl
[20] R. D. Martin, D. J. Thomson: Robust-resistant spectrum estimation. Proc. IEEE 70 (1982), 1097-1114.
[21] D. C. Montgomery, L. A. Johnson: Forecasting and Time Series Analysis. McGraw-Hill, New York 1976. | Zbl
[22] K. Sejling H. Madsen J. Hoist U. Hoist, J.-E. England: A method for recursive robust estimation of AR-parameters. Preprint, Technical University Lyngby, Denmark and University of Lund, Sweden 1990.
[23] N. Stockinger, R. Dutter: Robust Time Series and Analysis: A Survey. Supplement to Kybernetika 23 (1987). | MR