Neurodynamic adaptive control systems
Kybernetika, Tome 29 (1993) no. 1, pp. 30-47 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C40
@article{KYB_1993_29_1_a2,
     author = {Proano, Julio C. and Bia{\l}asiewicz, Jan T. and Wall, Edward T.},
     title = {Neurodynamic adaptive control systems},
     journal = {Kybernetika},
     pages = {30--47},
     year = {1993},
     volume = {29},
     number = {1},
     mrnumber = {1227740},
     zbl = {0790.93088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1993_29_1_a2/}
}
TY  - JOUR
AU  - Proano, Julio C.
AU  - Białasiewicz, Jan T.
AU  - Wall, Edward T.
TI  - Neurodynamic adaptive control systems
JO  - Kybernetika
PY  - 1993
SP  - 30
EP  - 47
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1993_29_1_a2/
LA  - en
ID  - KYB_1993_29_1_a2
ER  - 
%0 Journal Article
%A Proano, Julio C.
%A Białasiewicz, Jan T.
%A Wall, Edward T.
%T Neurodynamic adaptive control systems
%J Kybernetika
%D 1993
%P 30-47
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1993_29_1_a2/
%G en
%F KYB_1993_29_1_a2
Proano, Julio C.; Białasiewicz, Jan T.; Wall, Edward T. Neurodynamic adaptive control systems. Kybernetika, Tome 29 (1993) no. 1, pp. 30-47. http://geodesic.mathdoc.fr/item/KYB_1993_29_1_a2/

[1] M. I. Jordan: Altractor dynamics and parallelism in a connectionist sequential machine. In: Proc. Eighth Annual Conf. of the Cognitive Science Society, Hillsdale, N.J. 1986.

[2] B. Widrow, R. Winter: Neural nets for adaptive filtering and adaptive pattern recognition. IEEE Computer Magazine, March 1998.

[3] D. Rumelhart D. Hinton, G. Williams: Learning internal representations by error propagation. In: Parallel Distributed Processing (D. Rummelhart and F. McClelland, eds.), Vol. 1, The MIT Press, 1986.

[4] J. C. Hsu, A. V. Meyer: Modern Control Principles and Applications. McGraw-Hill, N. Y. 1968. | Zbl

[5] J. T. Bialasiewicz J. C. Proano, E. T. Wall: Implementation of intelligent controller using neural network state estimator. In: Proc. Fourth IEEE International Symposium on Intelligent Control, Sept. 1989.

[6] J. W. Weinstein, J. L. Melsa: Design of a simplified vertical channel landing control autopilot using state-variables. 1970 SWIEEECO Record, IEEE Catalog No. 70C5-SWIECO.

[7] B. Bavarian: Introduction to neural networks for intelligent control. IEEE Control Systems Magazine, April 1988, 3-7.

[8] D. Psaltis A. Sideris, A. A. Yamamura: A multilayered neural network controller. IEEE Control Systems Magazine, April 1988, 17-21.

[9] P. J. Werbos: Backpropagation through time: What it does and how to do it. Proc. IEEE 75(1990), 9, 1550-1560.

[10] P. J. Werbos: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Dissertation, Committee on Appl. Math., Harvard Univ., Cambridge, Mass. 1974.

[11] B. Widrow, M. A. Lehr: 30 years of adaptive neural networks: Perception, madaline and backpropagation. In: Proc. IEEE 75 (1990), 9, 1415-1442.

[12] S. Chen C.F. N. Cowan S. A. Billings, P.M. Grant: Parallel recursive prediction error algorithm for training layered neural networks. Internat. J. Control 51 (1990), 6, 1215-1228. | MR

[13] K. Hornik: Multilayer feedforward networks are universal approximators. Neural Networks Z (1989), 2, 359-366.

[14] K. Hornik: Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (1991), 251-257.

[15] G. Cybenko: Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2 (1989), 303-314. | MR | Zbl

[16] D. Soloway, J. T. Bialasiewicz: Neural network modeling of nonlinear systems based on Volterra series extension of a linear model. In: Proc. 7th IEEE Intl. Symposium on Intelligent Control, Glasgow, Scotland, 1992.

[17] C. Batur H. Zhang J. Padovan, V. Kasparian: Davidon least square based neural network learning algorithms. ACC, 1992, 973-977.

[18] T. W. Miller R. S. Sutton, III, P. J. Werbos (eds.): Neural Network for Control. MIT Press, Cambrdige, Mass. 1990.

[19] K. S. Narendra, K. Parathasarathy: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1 (1990), 4-27.

[20] J. T. Bialasiewicz, D. Soloway: Neural network of dynamical systems. In: Proc. 5th IEEE Intl. Symposium on Intelligent Control, Philadelphia, 1990, 500-505.

[21] S. Chen S.A. Billings, P. M. Grant: Nonlinear system identification using neural networks. J. Control 51 (1990), 6, 1191-1214. | MR

[22] M. M. Polycarpou, P. A. Ioannou: Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks. 1992, ACC, 36-40.

[23] J. T. Bialasiewicz, T. T. Ho: Neural adaptive identification and control. In: Proc. 1991 Intl. Conf. on Artificial Neural Networks in Engineering. St. Louis, Missouri, 1991.

[24] T. T. Ho H. T. Ho J. T. Bialasiewicz, E. T. Wall: Stochastic neural direct adaptive control. In: Proc. 6th IEEE Intl. Symposium on Intelligent Control, Arlington, Virginia, 1991.

[25] T. T. Ho H. T. Ho, J. T. Bialasiewicz: Stochastic neural adaptive control for non-linear time varying systems. In: Proc. 1991 Intl. Conf. on Artificial Neural Networks in Engineering. St. Louis, Missouri, 1991.

[26] T. T. Ho S. T. Ho J. T. Bialasiewicz, E. T. Wall: Stochastic neural adaptive control using state space innovations model. In: Proc. 1991 IJCNN, Singapore, 1991.

[27] T. T. Ho H. T. Ho, L. T. Ho: Stochastic neural adaptive control for time varying linear systems based on Newton and gradient optimizations. 1992, ACC, 51-55.