Fuzzy concepts defined via residuated maps
Kybernetika, Tome 28 (1992), pp. 25-27
@article{KYB_1992_28_Suppl_a4,
author = {Achache, Achille and Sangalli, Arturo A. L.},
title = {Fuzzy concepts defined via residuated maps},
journal = {Kybernetika},
pages = {25--27},
year = {1992},
volume = {28},
number = {Suppl},
mrnumber = {1226046},
zbl = {0985.54500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_Suppl_a4/}
}
Achache, Achille; Sangalli, Arturo A. L. Fuzzy concepts defined via residuated maps. Kybernetika, Tome 28 (1992), pp. 25-27. http://geodesic.mathdoc.fr/item/KYB_1992_28_Suppl_a4/
[1] A. Achache: Galois connection of a fuzzy subset. Fuzzy Sets and Systems 8 (1982), 215 - 218. | MR
[2] A. Achache: How to fuzzify a closure space. J. Math. Anal. Appl. ISO (1988), 538 - 544. | MR | Zbl
[3] A. Achache, A.A.L. Sangalli: Préordres, résiduation et espaces de fermeture. Appl. Discrete Math, (to appear). | MR | Zbl
[4] T. S. BIyth, M.F. Janowitz: Residuation Theory. Pergamon Press, Oxford 1972. | MR
[5] A. Rosenfeld: Fuzzy groups. J. Math. Anal. Appl. 35 (1971), 512 - 517. | MR | Zbl