The algebra of first-order fuzzy logic
Kybernetika, Tome 28 (1992) no. 6, pp. 506-511 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03B50, 03B52, 03G10, 06D30
@article{KYB_1992_28_6_a6,
     author = {Turunen, Esko},
     title = {The algebra of first-order fuzzy logic},
     journal = {Kybernetika},
     pages = {506--511},
     year = {1992},
     volume = {28},
     number = {6},
     mrnumber = {1204599},
     zbl = {0776.03010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a6/}
}
TY  - JOUR
AU  - Turunen, Esko
TI  - The algebra of first-order fuzzy logic
JO  - Kybernetika
PY  - 1992
SP  - 506
EP  - 511
VL  - 28
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a6/
LA  - en
ID  - KYB_1992_28_6_a6
ER  - 
%0 Journal Article
%A Turunen, Esko
%T The algebra of first-order fuzzy logic
%J Kybernetika
%D 1992
%P 506-511
%V 28
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a6/
%G en
%F KYB_1992_28_6_a6
Turunen, Esko. The algebra of first-order fuzzy logic. Kybernetika, Tome 28 (1992) no. 6, pp. 506-511. http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a6/

[1] L. P. Belluce: Semisimple and complete MV-algebras (to appear). | MR

[2] L.P. Belluce: Semisimple algebras of infinite valued logic and bold fuzzy set theory. Can. J. Math. 6 (1986), 1356-1379. | MR | Zbl

[3] L. P. Belluce A. Di Nola, S. Sessa: Triangular norms, MV-algebras and bold fuzzy se theory (to appear). | MR

[4] C. C. Chang: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. | MR | Zbl

[5] C. C. Chang: A new proof of the completeness of Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80. | MR

[6] J.M. Font J. A. Rodrigues, A. Torres: Wajsberg algebras. Stochastica 8 (1984), 1, 5-31. | MR

[7] C.S. Hoo: MV-algebras, ideals and semisimplicity. Math. Japon 34 (1989), 4, 563-583. | MR | Zbl

[8] D. Mundici: Interpretation of AFC*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 1, 15-63. | MR

[9] D. Mundici: Mapping Abelian 1-group with strong unit one-one into MV-algebras. J. Algebra 98 (1986), 76-81. | MR

[10] D. Mundici: The C*-algebras of three-valued logic. In: Logic Colloquium 88 (Ferro, Bonotto, Valentin and Zanardo, eds.), pp. 61-77. | MR

[11] D. Mundici: The derivative of truth in Lukasiewicz sentential calculus. Contemporary Math. 69 (1988), 209-227. | MR | Zbl

[12] A. Di Nola: Representation and reticulation by quontients of MV-algebras. Manuscript.

[13] V. Novák: On the syntactico-semantical completeness of first-order fuzzy logic. Kybernetika 26 (1990), 1, 47-66; 2, 134-154.

[14] J. Pavelka: On fuzzy logic I, II, III. Z. Math. Logik Grundlag. Math. 25 (1979), 42-52; 119-134; 447-464.

[15] H. Raisowa, R. Sikorski: The Mathematics of Metamathematics. PWN, Warszawa 1963.

[16] L. A. Zadeh: Fuzzy sets. Inform, and Control 8 (1965), 338-353. | MR | Zbl