@article{KYB_1992_28_6_a4,
author = {Morvai, Guszt\'av},
title = {Portfolio choice based on the empirical distribution},
journal = {Kybernetika},
pages = {484--493},
year = {1992},
volume = {28},
number = {6},
mrnumber = {1204597},
zbl = {0776.90009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a4/}
}
Morvai, Gusztáv. Portfolio choice based on the empirical distribution. Kybernetika, Tome 28 (1992) no. 6, pp. 484-493. http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a4/
[1] A.H.Algoet, T.M. Cover: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16 (1988), 876-898. | MR
[2] Z.Artstein, S. Hart: Law of large numbers for random sets and allocation processes. Math. Oper. Res. 6 (1981), 485-492. | MR | Zbl
[3] A. R. Barron, T. M. Cover: A bound on the financial value of information. IEEE Trans. Inform. Theory IT-34 (1988), 1097-1100. | MR | Zbl
[4] R. Bell, T.M. Cover: Game-theoretic optimal portfolios. Management Sci. 34 (1988), 724-733. | MR | Zbl
[5] L. Breiman: Investment policies for expanding businesses optimal in a long-run sense. Naval Res.
[6] L. Breiman: Optimal gambling systems for favorable games. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA 1961, pp. 65-78. | MR | Zbl
[7] T. M. Cover: An algorithm for maximizing expected long investment return. IEEE Trans. Infrom. Theory IT-30 (1984), 369-373. | MR
[8] T. M. Cover: Universal portfolios. Math. Finance 1 (1991), 1-29. | MR | Zbl
[9] T. M. Cover, J. A. Thomas: Elements of Information Theory. Wiley, New York 1991. | MR | Zbl
[10] M. Finkelstein, R. Whitley: Optimal strategies for repeated games. Adv. Appl. Probab. 13 (1981), 415-428. | MR | Zbl
[11] J. Kelly: A new interpretation of information rate. Bell Sys. Tech. J. 35 (1956), 917-926. | MR
[12] A.J. King, R.J.-B. Wets: Epi-consistency of convex stochastic programs. Stochastics Rep. 34 (1991), 83-92. | MR | Zbl
[13] G. Morvai: Empirical log-optimal portfolio selection. Problems Control Inform. Theory 20 (1991), 453-463. | MR | Zbl
[14] R.T. Rockafellar: Integral functionals, normal integrands and measurable selections. In: Nonlinear Operators and the Calculus of Variations (Gossez, ed., Lecture Notes in Mathematics). Springer- Verlag, Berlin - Heidelberg - New York 1976, pp. 157-207. | MR | Zbl
[15] R.J.-B. Wets: Constrained estimation: consistency and asymptotics. Appl. Stochastic Models Data Anal. 7 (1991), 17-32. | MR | Zbl