Adaptive maximum-likelihood-like estimation in linear models. II. Asymptotic normality
Kybernetika, Tome 28 (1992) no. 6, pp. 454-471 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F12, 62F35, 62G07, 62G35, 62J05
@article{KYB_1992_28_6_a2,
     author = {V{\'\i}\v{s}ek, Jan \'Amos},
     title = {Adaptive maximum-likelihood-like estimation in linear models. {II.} {Asymptotic} normality},
     journal = {Kybernetika},
     pages = {454--471},
     year = {1992},
     volume = {28},
     number = {6},
     mrnumber = {1204595},
     zbl = {0779.62059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a2/}
}
TY  - JOUR
AU  - Víšek, Jan Ámos
TI  - Adaptive maximum-likelihood-like estimation in linear models. II. Asymptotic normality
JO  - Kybernetika
PY  - 1992
SP  - 454
EP  - 471
VL  - 28
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a2/
LA  - en
ID  - KYB_1992_28_6_a2
ER  - 
%0 Journal Article
%A Víšek, Jan Ámos
%T Adaptive maximum-likelihood-like estimation in linear models. II. Asymptotic normality
%J Kybernetika
%D 1992
%P 454-471
%V 28
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a2/
%G en
%F KYB_1992_28_6_a2
Víšek, Jan Ámos. Adaptive maximum-likelihood-like estimation in linear models. II. Asymptotic normality. Kybernetika, Tome 28 (1992) no. 6, pp. 454-471. http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a2/

[1] R. Beran: An efficient and robust adaptive estimator of location. Ann. Statist. 6 (1978), 292-313. | MR | Zbl

[2] M. Csörgö, P. Révész: Strong Approximations in Probability and Statistics. Akadémiai Kiadó, Budapest 1981. | MR

[3] E. Hewitt, K. Stromberg: Real and Abstract Analysis. Springer-Verlag, Berlin - Heidelberg - New York 1965. | MR | Zbl

[4] R. A. Maronna, V.J. Yohai: Asymptotic behaviour of general M-estimates for regression and scale with random carriers. Z. Wahrsch. verw. Gebiete 58 (1981), 7-20. | MR

[5] R.C. Rao: Linear Statistical Inference and Its Applications. J. Wiley, New York 1973. | MR | Zbl

[6] J. Á. Víšek: Adaptive Estimation in Linear Regression Model. Technical Report No. 1654, Institute of Information Theory and Automation of Czechoslovak Academy of Sciences, Prague 1989.

[7] J. A. Víšek: Adaptive Maximum-likelihood-like Estimation in Linear Model. Technical Report No. 1654, Institute of Information Theory and Automation of Czechoslovak Academy of Sciences, Prague 1989.

[8] J. A. Víšek: What is adaptivity of regression analysis intended for?. In: Proceedings of ROBUST'90 (J. Antoch, ed.), Union of Czechoslovak Mathematicians and Physicists, Prague 1990, pp. 160-181.

[9] J. A. Víšek: Adaptive estimation in linear regression model. Part 1. Consistency. Kybernetika 28 (1991), 1,26-36. | MR

[10] J. A. Víšek: Adaptive estimation in linear regression model. Part 2. Asymptotic normality. Kybernetika 28 (1991), 2, 100-119. | MR

[11] J. A. Víšek: Adaptive maximum-likelihood-like estimation in linear models. Part 1. Consistency. Kybernetika 28 (1991), 5, 357-382. | MR