A classification of nonlinear regression models and parameter confidence regions
Kybernetika, Tome 28 (1992) no. 6, pp. 444-453 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F25, 62J02
@article{KYB_1992_28_6_a1,
     author = {P\'azman, Andrej},
     title = {A classification of nonlinear regression models and parameter confidence regions},
     journal = {Kybernetika},
     pages = {444--453},
     year = {1992},
     volume = {28},
     number = {6},
     mrnumber = {1204594},
     zbl = {0790.62065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a1/}
}
TY  - JOUR
AU  - Pázman, Andrej
TI  - A classification of nonlinear regression models and parameter confidence regions
JO  - Kybernetika
PY  - 1992
SP  - 444
EP  - 453
VL  - 28
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a1/
LA  - en
ID  - KYB_1992_28_6_a1
ER  - 
%0 Journal Article
%A Pázman, Andrej
%T A classification of nonlinear regression models and parameter confidence regions
%J Kybernetika
%D 1992
%P 444-453
%V 28
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a1/
%G en
%F KYB_1992_28_6_a1
Pázman, Andrej. A classification of nonlinear regression models and parameter confidence regions. Kybernetika, Tome 28 (1992) no. 6, pp. 444-453. http://geodesic.mathdoc.fr/item/KYB_1992_28_6_a1/

[1] D. M. Bates, D. G. Watts: Relative curvature measures of nonlinearity (with discussion). J. Roy. Statist. Soc. B 42]1980), 1-25. | MR

[2] D. M. Bates, D. G. Watts: Nonlinear Regression Analysis and Its Application. Wiley, New York -Chichester 1988. | MR

[3] E. M. L. Beale: Confidence regions in nonlinear estimation (with discussion). J. Roy. Statist. Soc. B 22 (1960), 41-88. | MR

[4] G. P. Y. Clarke: Approximate confidence limits for a parameter function in nonlinear regression. J. Amer. Statist. Assoc. 82 (1987), 221-230. | MR | Zbl

[5] E. Z. Demidenko: Optimization and Regression (in Russian). Nauka, Moskva 1989. | MR

[6] L.P. Eisenhart: Riemannian Geometry. Princeton, Univerzity Press, Princeton, N. J. 1960. | MR

[7] D. C. Hamilton D. C. Watts, D. M. Bates: Accounting for intrinsic nonlinearity in nonlinear regression parameter inference region. Ann. Statist. 10 (1982), 386-393. | MR

[8] P. Hougaard: Covariance stabilizing transformations in nonlinear regression. Scand. J. Statist. 13 (1986), 207-210. | MR

[9] S. Johansen: Functional Relations, Radom Coefficients and Nonlinear Regression with Application to Kinetic Data. Lectures Notes in Statistics, Springer-Verlag, Berlin - Heidelberg - New York 1984. | MR

[10] R. Kass: Canonical parameterizations and zero parameter effect curvature. J. Roy. Statist. Soc B 46 (1984), 86-92. | MR

[11] A. Pázman: Flat Gaussian nonliear regression models. In: Model Oriented Data Analysis (H. Läuter and V. Fedorov, eds.). (Lecture Notes in Economics and Mathematical Systems 297). Springer-Verlag, Berlin - Heidelberg - New York 1987, pp. 120 - 124. | MR

[12] A. Pázman: Almost exact distribution of estimators II - Flat nonliear regression models. Statistics 21 (1990), 21-33. | MR

[13] A. Pázman: Pivotal variables and confidence regions in flat nonliear regression models with unknown $\sigma$. Statistics 22 (1991), 177-189. | MR

[14] A. Pázman: Nonlinear Statistical Models of Experiments (1993 to be published). | MR

[15] D. A. Ratkowsky: Nonliear regression models. Marcel Dekker, New York 1983.

[16] To-Van-Ban: Confidence Regions in a Nonliear Regression Models (in Slovak). Ph. D. Dissertation Comenius University, Bratislava 1990.