On pseudo-random sequences and their relation to a class of stochastical laws
Kybernetika, Tome 28 (1992) no. 5, pp. 383-391 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03D15, 60A99, 68Q30
@article{KYB_1992_28_5_a2,
     author = {Kramosil, Ivan and \v{S}indel\'a\v{r}, Jan},
     title = {On pseudo-random sequences and their relation to a class of stochastical laws},
     journal = {Kybernetika},
     pages = {383--391},
     year = {1992},
     volume = {28},
     number = {5},
     mrnumber = {1197721},
     zbl = {0773.60006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a2/}
}
TY  - JOUR
AU  - Kramosil, Ivan
AU  - Šindelář, Jan
TI  - On pseudo-random sequences and their relation to a class of stochastical laws
JO  - Kybernetika
PY  - 1992
SP  - 383
EP  - 391
VL  - 28
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a2/
LA  - en
ID  - KYB_1992_28_5_a2
ER  - 
%0 Journal Article
%A Kramosil, Ivan
%A Šindelář, Jan
%T On pseudo-random sequences and their relation to a class of stochastical laws
%J Kybernetika
%D 1992
%P 383-391
%V 28
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a2/
%G en
%F KYB_1992_28_5_a2
Kramosil, Ivan; Šindelář, Jan. On pseudo-random sequences and their relation to a class of stochastical laws. Kybernetika, Tome 28 (1992) no. 5, pp. 383-391. http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a2/

[1] C. Calude: Theories of Computational Complexity. North-Holland, Amsterdam - New York - Oxford - Tokyo 1988. | MR | Zbl

[2] T. L. Fine: Theories of Probability - an Examination of Foundations. Academic Press, New York 1973. | MR | Zbl

[3] I. Kramosil, J. Šindelář: Infinite pseudo-random sequences of high algorithmic complexity. Kybernetika 20 (1984), 6, 429-437. | MR

[4] I. Kramosil, J. Šindelář: A note on the law of iterated logarithm from the viewpoint of Kolmogorov program complexity. Problems Control Inform. Theory 16 (1987), 6, 399-409. | MR

[5] P. Martin-Löf: The definition of random sequences. Inform, and Control 9 (1966), 4, 602-619. | MR

[6] P. Martin-Löf: Complexity oscillations in infinite binary sequences. Z. Wahrsch. Verw. Gebiete 19 (1971), 2, 225-230. | MR

[7] V. G. Vovk: The law of the iterated logarithm for sequences that are random in the sense of Kolmogorov or chaotic (in Russian). Teor. Veroyatnost. i Primenen. 32 (1987), 3, 456-468. | MR