@article{KYB_1992_28_5_a2,
author = {Kramosil, Ivan and \v{S}indel\'a\v{r}, Jan},
title = {On pseudo-random sequences and their relation to a class of stochastical laws},
journal = {Kybernetika},
pages = {383--391},
year = {1992},
volume = {28},
number = {5},
mrnumber = {1197721},
zbl = {0773.60006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a2/}
}
Kramosil, Ivan; Šindelář, Jan. On pseudo-random sequences and their relation to a class of stochastical laws. Kybernetika, Tome 28 (1992) no. 5, pp. 383-391. http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a2/
[1] C. Calude: Theories of Computational Complexity. North-Holland, Amsterdam - New York - Oxford - Tokyo 1988. | MR | Zbl
[2] T. L. Fine: Theories of Probability - an Examination of Foundations. Academic Press, New York 1973. | MR | Zbl
[3] I. Kramosil, J. Šindelář: Infinite pseudo-random sequences of high algorithmic complexity. Kybernetika 20 (1984), 6, 429-437. | MR
[4] I. Kramosil, J. Šindelář: A note on the law of iterated logarithm from the viewpoint of Kolmogorov program complexity. Problems Control Inform. Theory 16 (1987), 6, 399-409. | MR
[5] P. Martin-Löf: The definition of random sequences. Inform, and Control 9 (1966), 4, 602-619. | MR
[6] P. Martin-Löf: Complexity oscillations in infinite binary sequences. Z. Wahrsch. Verw. Gebiete 19 (1971), 2, 225-230. | MR
[7] V. G. Vovk: The law of the iterated logarithm for sequences that are random in the sense of Kolmogorov or chaotic (in Russian). Teor. Veroyatnost. i Primenen. 32 (1987), 3, 456-468. | MR