@article{KYB_1992_28_5_a1,
author = {V{\'\i}\v{s}ek, Jan \'Amos},
title = {Adaptive maximum-likelihood-like estimation in linear models. {I.} {Consistency}},
journal = {Kybernetika},
pages = {357--382},
year = {1992},
volume = {28},
number = {5},
mrnumber = {1197720},
zbl = {0779.62058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a1/}
}
Víšek, Jan Ámos. Adaptive maximum-likelihood-like estimation in linear models. I. Consistency. Kybernetika, Tome 28 (1992) no. 5, pp. 357-382. http://geodesic.mathdoc.fr/item/KYB_1992_28_5_a1/
[1] R. Beran: An efficient and robust adaptive estimator of location. Ann. Statist. 6 (1978), 292-313. | MR | Zbl
[2] M. Csörgö, P. Révész: Strong Approximations in Probability and Statistics. Akadémiai Kiadó, Budapest 1981. | MR
[3] E. Hewitt, K. Stromberg: Real and Abstract Analysis. Springer-Verlag, Berlin - Heidelberg - New York 1965. | MR | Zbl
[4] R. A. Maronna, V.J. Yohai: Asymptotic behaviour of general M-estimates for regression and scale with random carriers. Z. Wahrsch. verw. Gebiete 58 (1981), 7-20. | MR
[5] R. C. Rao: Linear Statistical Inference and Its Applications. J. Wiley, New York 1973. | MR | Zbl
[6] J. Á. Víšek: Adaptive estimation in linear regression model. Part 1. Consistency. Kybernetika 28 (1991), 1, 26-36. | MR
[7] J. Á. Víšek: Adaptive estimation in linear regression model. Part 2. Asymptotic normality. Kyber- netika 28 (1991), 2, 100-119. | MR