On the asymptotic optimum allocation in estimating inequality from complete data
Kybernetika, Tome 28 (1992) no. 4, pp. 325-332 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62D05, 62P20, 91B82
@article{KYB_1992_28_4_a6,
     author = {Gil, Mar{\'\i}a Angeles and Mart{\'\i}nez, Ignacio},
     title = {On the asymptotic optimum allocation in estimating inequality from complete data},
     journal = {Kybernetika},
     pages = {325--332},
     year = {1992},
     volume = {28},
     number = {4},
     mrnumber = {1183623},
     zbl = {0771.62083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a6/}
}
TY  - JOUR
AU  - Gil, María Angeles
AU  - Martínez, Ignacio
TI  - On the asymptotic optimum allocation in estimating inequality from complete data
JO  - Kybernetika
PY  - 1992
SP  - 325
EP  - 332
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a6/
LA  - en
ID  - KYB_1992_28_4_a6
ER  - 
%0 Journal Article
%A Gil, María Angeles
%A Martínez, Ignacio
%T On the asymptotic optimum allocation in estimating inequality from complete data
%J Kybernetika
%D 1992
%P 325-332
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a6/
%G en
%F KYB_1992_28_4_a6
Gil, María Angeles; Martínez, Ignacio. On the asymptotic optimum allocation in estimating inequality from complete data. Kybernetika, Tome 28 (1992) no. 4, pp. 325-332. http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a6/

[1] A. B. Atkinson: On the measurement of inequality. J. Econom. Theory 2 (1970), 131-143. | MR

[2] P. Bickel, K. A. Doksum: Mathematical Statistics. Holden-Day, Inc., Oakland 1977. | MR | Zbl

[3] Y. M. M. Bishop S. E. Fienberg, P.W. Holland: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge 1975. | MR

[4] F. Bourguignon: Decomposable income inequality measures. Econometrica 47 (1979), 901-920. | MR | Zbl

[5] C. Caso, M.A. Gil: Estimating income inequality in the stratified sampling from complete data; Part 1: The unbiased estimation and applications. Kybernetika 25 (1989), 298-311. | MR

[6] C. Caso, M.A. Gil: Estimating income inequality in the stratified sampling from complete data; Part 2: The asymptotic behaviour and the choice of sample size. Kybernetika 25 (1989), 312-319. | MR

[7] F. A. Cowell: On the structure of additive inequality measures. Rev.of Econom.Stud. 47 (1980), 521-531. | Zbl

[8] F. A. Cowell, K. Kuga: Additivity and the entropy concept. An axiomatic approach to inequality measurement. J. Econom. Theory 25 (1981), 131-143. | MR | Zbl

[9] W. Eichhorn, W. Gehrig: Measurement of inequality in economics. In: Modern Applied Mathematics - Optimization and Operations Research (B. Korte, ed.), North-Holland, Amsterdam 1982. | Zbl

[10] M.A. Gil: A note on the stratification and gain in precision in estimating diversity from large samples. Commun. Statist. - Theory and Methods 18 (1989), 1521-1526. | MR

[11] M. A. Gil C. Caso, P. Gil: Estudio asintotico de una clase de indices de desigualdad muestrales. Trab. de Est. 4 (1989), 95-109.

[12] M.A. Gil R. Perez, P. Gil: A family of measures of uncertainty involving utilities: definitions, properties, applications and statistical inferences. Metrika 36 (1989), 129-147. | MR

[13] I. Horowitz: Employment concentration in the common market: an entropy approach. J. Roy. Statist. Soc Ser. A 133 (1970), 463-679.

[14] C. R. Rao: Linear Statistical Inference and its Applications. Wiley, New York 1973. | MR | Zbl

[15] A.F. Shorrocks: The class of additively decomposable inequality measures. Econometrica 48 (1980), 613-625. | MR | Zbl

[16] H. Theil: Economics and Information Theory. North-Holand, Amsterdam 1967.

[17] D. Zagier: On the decomposability of the Gini coefficient and other indices of inequality. Discussion paper No. 108. Projektgruppe Theoretische Modelle. Universität Bonn, 1983.

[18] J. Zvárová: On asymptotic behaviour of a sample estimator of Rényi's information of order $\alpha$. In: Trans. 6th Prague Conf. on Inf. Theory, Stat. Dec. Func, Rand. Proc, Academia Prague 1973, pp. 919-924. | MR | Zbl