@article{KYB_1992_28_4_a4,
author = {Lachout, Petr},
title = {On asymptotic behaviour of empirical processes},
journal = {Kybernetika},
pages = {292--308},
year = {1992},
volume = {28},
number = {4},
mrnumber = {1183621},
zbl = {0771.60004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a4/}
}
Lachout, Petr. On asymptotic behaviour of empirical processes. Kybernetika, Tome 28 (1992) no. 4, pp. 292-308. http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a4/
[1] P.J. Bickel, M.J. Wichura: Convergence criteria for multiparameter stochastic processes and some application. Ann. Math. Statist. 42 (1971), 1656-1670. | MR
[2] P. Lachout: A martingale central limit theorem. Comment. Math. Univ. Carolinae 27 (1986), 2, 371-375. | MR | Zbl
[3] P. Lachout: Billingsley-type tightness criteria for multiparameter stochastic processes. Kybernetika H (1988), 5, 363-371. | MR | Zbl
[4] D. L. McLeish: Dependent central limit theorem and in variance principles. Ann. Probab. 2 (1974), 2, 620-628. | MR
[5] S. M. Miller: Empirical processes based upon residuals from errorsin-variables regression. Ann. Statist. 17 (1989), 282-292. | MR
[6] G. Neuhaus: On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 1285-1295. | MR | Zbl
[7] S. Portnoy: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Händle and D. Martin, eds.), Springer- Verlag, New York - Berlin - Heidelberg 1983, pp. 231-246. | MR
[8] M. L. Straf: A General Skorohod Space and Its Applications to the Weak Convergence of Stochastic Processes with Several Parameters. Ph.D. Dissertation, Univ. of Chicago 1969.
[9] J. Štěpán: Probability Theory (in Czech). Academia, Prague 1987.