On asymptotic behaviour of empirical processes
Kybernetika, Tome 28 (1992) no. 4, pp. 292-308 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60B10, 60F17, 62E10
@article{KYB_1992_28_4_a4,
     author = {Lachout, Petr},
     title = {On asymptotic behaviour of empirical processes},
     journal = {Kybernetika},
     pages = {292--308},
     year = {1992},
     volume = {28},
     number = {4},
     mrnumber = {1183621},
     zbl = {0771.60004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a4/}
}
TY  - JOUR
AU  - Lachout, Petr
TI  - On asymptotic behaviour of empirical processes
JO  - Kybernetika
PY  - 1992
SP  - 292
EP  - 308
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a4/
LA  - en
ID  - KYB_1992_28_4_a4
ER  - 
%0 Journal Article
%A Lachout, Petr
%T On asymptotic behaviour of empirical processes
%J Kybernetika
%D 1992
%P 292-308
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a4/
%G en
%F KYB_1992_28_4_a4
Lachout, Petr. On asymptotic behaviour of empirical processes. Kybernetika, Tome 28 (1992) no. 4, pp. 292-308. http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a4/

[1] P.J. Bickel, M.J. Wichura: Convergence criteria for multiparameter stochastic processes and some application. Ann. Math. Statist. 42 (1971), 1656-1670. | MR

[2] P. Lachout: A martingale central limit theorem. Comment. Math. Univ. Carolinae 27 (1986), 2, 371-375. | MR | Zbl

[3] P. Lachout: Billingsley-type tightness criteria for multiparameter stochastic processes. Kybernetika H (1988), 5, 363-371. | MR | Zbl

[4] D. L. McLeish: Dependent central limit theorem and in variance principles. Ann. Probab. 2 (1974), 2, 620-628. | MR

[5] S. M. Miller: Empirical processes based upon residuals from errorsin-variables regression. Ann. Statist. 17 (1989), 282-292. | MR

[6] G. Neuhaus: On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 (1971), 1285-1295. | MR | Zbl

[7] S. Portnoy: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Händle and D. Martin, eds.), Springer- Verlag, New York - Berlin - Heidelberg 1983, pp. 231-246. | MR

[8] M. L. Straf: A General Skorohod Space and Its Applications to the Weak Convergence of Stochastic Processes with Several Parameters. Ph.D. Dissertation, Univ. of Chicago 1969.

[9] J. Štěpán: Probability Theory (in Czech). Academia, Prague 1987.