On some sufficient optimality conditions in multiobjective differentiable programming
Kybernetika, Tome 28 (1992) no. 4, pp. 263-270 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 90C29, 90C30
@article{KYB_1992_28_4_a1,
     author = {Preda, Vasile},
     title = {On some sufficient optimality conditions in multiobjective differentiable programming},
     journal = {Kybernetika},
     pages = {263--270},
     year = {1992},
     volume = {28},
     number = {4},
     mrnumber = {1183618},
     zbl = {0784.90070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a1/}
}
TY  - JOUR
AU  - Preda, Vasile
TI  - On some sufficient optimality conditions in multiobjective differentiable programming
JO  - Kybernetika
PY  - 1992
SP  - 263
EP  - 270
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a1/
LA  - en
ID  - KYB_1992_28_4_a1
ER  - 
%0 Journal Article
%A Preda, Vasile
%T On some sufficient optimality conditions in multiobjective differentiable programming
%J Kybernetika
%D 1992
%P 263-270
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a1/
%G en
%F KYB_1992_28_4_a1
Preda, Vasile. On some sufficient optimality conditions in multiobjective differentiable programming. Kybernetika, Tome 28 (1992) no. 4, pp. 263-270. http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a1/

[1] A. Ben-Israel, B. Mond: What is invexity?. J. Austral. Math. Soc. 28 (1986), 1-9. | MR | Zbl

[2] M. A. Hanson: On sufficiency on the Kuhn-Tucker conditions. J. Math. Annal. Appl. 80 (1981), 545 - 550. | MR

[3] M.A. Hanson, B. Mond: Further generalizations of convexity in mathematical programming. J. Inform. Optim. Sci. 3 (1982), 25-32. | MR | Zbl

[4] I. Jahn: Scalarization in vector optimization. Math. Programming 29 (1984), 203-218. | MR | Zbl

[5] J.G. Lin: Maximal vector and multiobjective optimization. J. Optim. Theory Appl. 18 (1976), 41-64. | MR

[6] D.T. Luc: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55 (1987), 85- 102. | MR | Zbl

[7] I. Marusciac: On Fritz John type optimality criterion in multiobjective optimization. Anal. Numer. Theor. Approx. 11 (1982), 109-114. | MR

[8] B. Mond: Generalized convexity in mathematical programming. Bull. Austral. Math. Soc. 27 (1983), 185-202. | MR | Zbl

[9] A. Pascoletti, P. Serafini: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42 (1984), 499-524. | MR | Zbl

[10] C. Singh: Duality theory in multiobjective differentiable programming. J. Inform. Optim. Sci. 9 (1988), 231-240. | MR

[11] C. Singh: Optimality conditions in multiobjective differentiable programming. J. Optim. Theory Appl. 53 (1987), 115-123. | MR | Zbl

[12] C. Singh, M.A. Hanson: Saddlepoint theory for nondifferentiable multiobjective fractional programming. J. Optim. Theory Appl. 51 (1986), 41-48. | MR | Zbl

[13] W. Standler: A survey of multicriteria optimization or the vector maximum problem. Part I: 1776-1960. J. Optim. Theory Appl. 29 (1979), 1-52. | MR

[14] A. Takayama: Mathematical Economics. The Dryden Press, Hinsdale, Illinois 1974. | MR | Zbl

[15] A.W. Tucker: Dual systems of homogeneous linear relations. In: Linear Inequalities and Related Systems (H.W. Kuhn, A.W. Tucker, eds.). Princeton University Press, Princeton, New Jersey 1956. | MR | Zbl