Computational experience with improved conjugate gradient methods for unconstrained minimization
Kybernetika, Tome 28 (1992) no. 4, pp. 249-262 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49M37, 65K05, 90-08, 90C30
@article{KYB_1992_28_4_a0,
     author = {Luk\v{s}an, Ladislav},
     title = {Computational experience with improved conjugate gradient methods for unconstrained minimization},
     journal = {Kybernetika},
     pages = {249--262},
     year = {1992},
     volume = {28},
     number = {4},
     mrnumber = {1183617},
     zbl = {0771.90090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a0/}
}
TY  - JOUR
AU  - Lukšan, Ladislav
TI  - Computational experience with improved conjugate gradient methods for unconstrained minimization
JO  - Kybernetika
PY  - 1992
SP  - 249
EP  - 262
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a0/
LA  - en
ID  - KYB_1992_28_4_a0
ER  - 
%0 Journal Article
%A Lukšan, Ladislav
%T Computational experience with improved conjugate gradient methods for unconstrained minimization
%J Kybernetika
%D 1992
%P 249-262
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a0/
%G en
%F KYB_1992_28_4_a0
Lukšan, Ladislav. Computational experience with improved conjugate gradient methods for unconstrained minimization. Kybernetika, Tome 28 (1992) no. 4, pp. 249-262. http://geodesic.mathdoc.fr/item/KYB_1992_28_4_a0/

[1] M. Al-Bali: Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J. Numer. Anal. 5 (1985), 121-124. | MR

[2] P. Baptist, J. Stoer: On the relation between quadratic termination and convergence properties of minimization algorithms. Part 2. Applications. Numer. Math. 28 (1977), 367-391. | MR | Zbl

[3] P. Bjorstadt, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization. Computing 22 (1979), 93-100. | MR

[4] A. R. Conn N. I. M. Gould, P. L. Toint: Testing a class of methods for solving minimization problems with simple bounds on the variables. Math. Comp. 50 (1988), 399-430. | MR

[5] W.C. Davidon: Variable metric method for minimization. A.E.C. Research and Development Report ANL-5990, 1959.

[6] W.C. Davidon: Optimally conditioned optimization algorithms without line searches. Math. Pro- gramming 9 (1975), 1-30. | MR | Zbl

[7] R. S. Dembo, T. Steihaug: Truncated-Newton algorithms for large-scale unconstrained minimization. Math. Programming 26 (1983), 190-212. | MR

[8] R. Fletcher: A FORTRAN subroutine for minimization by the method of conjugate gradients. Report No. AERE-R7073, Atomic Energy Research Establishment, Harwell 1972.

[9] R. Fletcher, M.J. D. Powell: A rapidly convergent descent method for minimization. Computer J. 6 (1963), 163-168. | MR | Zbl

[10] R. Fletcher, CM. Reeves: Function minimization by conjugate gradients. Computer J. 7 (1964), 149-154. | MR | Zbl

[11] J.C. Gilbert, and J. Nocedal: Global convergence properties of conjugate gradient methods for optimization. Report No. 1268, Institut National de Recherche en Inforrnatique et. en Automatique, 1990.

[12] A. Griewank, P. L. Toint: Partitioned variable metric updates for large structured optimization problems. Numer. Math. 39 (1982), 119-137. | MR | Zbl

[13] M. R. Hestenes, CM. Stiefel: Methods of conjugate gradient for solving linear systems. J. Res. Nat. Bur. Standards 49 (1964), 409-436. | MR

[14] Y. F. Hu, C. Storey: A Global Convergence Result for Conjugate Gradient Methods. Report No. A134, Loughborough University of Technology, 1990. | MR

[15] K.M. Khoda Y. Liu, C. Storey: A Generalized Polak-Ribiére Algorithm. Report No. A128, Loughborough University of Technology, 1990.

[16] L. Lukšan: Variable Metric Methods. Unconstrained Minimization. Academia, Prague 1990. In Czech. | MR

[17] L. Lukšan: Computational experience with improved variable metric methods for unconstrained minimization. Kybernetika 26 (1990), 415-431. | MR

[18] J.J. Moré B.S. Garbow, K.E. Hillstrom: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. | MR

[19] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comp. 35 (1980), 773-782. | MR | Zbl

[20] E. Polak, G. Ribiére: Note sur la convergence de methodes de directions conjugees. Revue Francaise Inform. Mech. Oper. 16-R1 (1969), 35-43. | MR

[21] M.J.D. Powell: Restart procedures of the conjugate gradient method. Math. Programming 12 (1977), 241-254. | MR

[22] M.J.D. Powell: Nonconvex Minimization Calculations and the Conjugate Gradient Method. Report No. DAMTP 1983/NA14, University of Cambridge, 1983. | MR

[23] M.J.D. Powell: Convergence Properties of Algorithms for Nonlinear Optimization. Report No. DAMPT 1985/NA1, University of Cambridge, 1985. | MR

[24] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization. Math. Comp. 24 (1970), 647-656. | MR

[25] D.F. Shanno: Globally convergent conjugate gradient algorithms. Math. Programming 33 (1985), 61-67. | MR | Zbl

[26] P. L. Toint: On sparse and symmetric matrix updating subject to a linear equation. Math. Comp. 31 (1987), 954-961. | MR

[27] D. Touati-Ahmed, C. Storey: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. 64 (1990), 379-397. | MR | Zbl

[28] G. Zoutendijk: Nonlinear programming, computational methods. In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 93-121. | MR | Zbl