An approximation of the pressure for the two-dimensional Ising model
Kybernetika, Tome 28 (1992) no. 3, pp. 234-238 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60K35, 60K40, 82B20, 82B44
@article{KYB_1992_28_3_a5,
     author = {Jan\v{z}ura, Martin},
     title = {An approximation of the pressure for the two-dimensional {Ising} model},
     journal = {Kybernetika},
     pages = {234--238},
     year = {1992},
     volume = {28},
     number = {3},
     mrnumber = {1174659},
     zbl = {0771.60101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a5/}
}
TY  - JOUR
AU  - Janžura, Martin
TI  - An approximation of the pressure for the two-dimensional Ising model
JO  - Kybernetika
PY  - 1992
SP  - 234
EP  - 238
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a5/
LA  - en
ID  - KYB_1992_28_3_a5
ER  - 
%0 Journal Article
%A Janžura, Martin
%T An approximation of the pressure for the two-dimensional Ising model
%J Kybernetika
%D 1992
%P 234-238
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a5/
%G en
%F KYB_1992_28_3_a5
Janžura, Martin. An approximation of the pressure for the two-dimensional Ising model. Kybernetika, Tome 28 (1992) no. 3, pp. 234-238. http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a5/

[1] M. Janzura: Estimating interactions in binary lattice data with nearest-neighbor property. Kybernetika 23 (1987), 136-142. | MR | Zbl

[2] D. H. Mayer: The Ruelle-Araki transfer operator in classical mechanics. (Lecture Notes in Physics 123.) Springer-Verlag, Berlin - Heidelberg - New York 1980. | MR

[3] L. Onsager: Crystal statistics. Part I: A two-dimensional modei with an order-disorder transition. Phys. Rev. 65 (1944), 117-149. | MR | Zbl

[4] C. Preston: Random Fields. (Lecture Notes in Mathematics 534.) Springer-Verlag, Berlin - Heidel- berg - New York 1976. | MR | Zbl

[5] R. Temam, I. Ekeland: Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976. | MR | Zbl