Every continuous first order autoregressive stochastic process is a Gaussian process
Kybernetika, Tome 28 (1992) no. 3, pp. 227-233
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1992_28_3_a4,
author = {Liese, Friedrich},
title = {Every continuous first order autoregressive stochastic process is a {Gaussian} process},
journal = {Kybernetika},
pages = {227--233},
year = {1992},
volume = {28},
number = {3},
mrnumber = {1174658},
zbl = {0784.60042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a4/}
}
Liese, Friedrich. Every continuous first order autoregressive stochastic process is a Gaussian process. Kybernetika, Tome 28 (1992) no. 3, pp. 227-233. http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a4/
[1] W. Feller: An Introduction to Probability Theory and 1ts Application. Vol. II. J. Wiley k Sons, New York 1971. | MR
[2] J. Michálek: 1-divergence of some diffusion processes. Problems Control Inform. Theory 19 (1990), 313-338. | MR
[3] A. V. Skorokhod: Processes with Independent Increments (in Russian). Nauka, Moscow 1964.
[4] I. Vajda: Distances and discrimination rates for stochastic processes. Stochastic Process. Appl. 35 (1990), 47-57. | MR | Zbl