@article{KYB_1992_28_3_a3,
author = {And\v{e}l, Ji\v{r}{\'\i}},
title = {Nonnegative multivariate $\operatorname{AR}(1)$ processes},
journal = {Kybernetika},
pages = {213--226},
year = {1992},
volume = {28},
number = {3},
mrnumber = {1174657},
zbl = {0770.62073},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a3/}
}
Anděl, Jiří. Nonnegative multivariate $\operatorname{AR}(1)$ processes. Kybernetika, Tome 28 (1992) no. 3, pp. 213-226. http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a3/
[1] J. Anděl: Statistische Analyse von Zeitreihen. Akademie-Verlag, Berlin 1984. | MR
[2] J. Anděl: On AR(1) processes with exponential white noise. Commun. Statist. - Theory Meth. 17 (1988), 1481-1495. | MR | Zbl
[3] J. Anděl: AR(1) processes with given moments of marginal distribution. Kybernetika 25 (1989), 337-347. | MR | Zbl
[4] J. Anděl: Nonlinear nonnegative AR(1) processes. Commun. Statist. - Theory Meth. 18 (1989), 4029-4037. | MR | Zbl
[5] J. Anděl: Non-negative autoregressive processes. J. Time Ser. Anal. 10 (1989), 1-11. | MR
[6] J. Anděl: Nonlinear positive AR(2) processes. Statistics 21 (1990), 591-600. | MR | Zbl
[7] J. Anděl, V. Dupač: An extension of the Borel lemma. Comment. Math. Univ. Carolin. 30 (1989), 403-404. | MR
[8] J. Anděl, K. Zvára: Tables for AR(1) processes with exponential white noise. Kybernetika 21, (1988), 372-377. | MR | Zbl
[9] C. B. Bell, E. P. Smith: Inference for non-negative autoregressive schemes. Commun. Statist. - Theory Meth. 15 (1986), 2267-2293. | MR | Zbl
[10] E.J. Hannan: Multiple Time Series. Wiley, New York 1970. | MR | Zbl
[11] M.A.A. Turkman: Bayesian analysis of an autoregressive process with exponential white noise. Statistics 21 (1990), 601-608. | MR | Zbl