Discrete-time Markov control processes with discounted unbounded costs: Optimality criteria
Kybernetika, Tome 28 (1992) no. 3, pp. 191-212 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49J45, 60J99, 93B55, 93C55, 93E03, 93E20
@article{KYB_1992_28_3_a2,
     author = {Hern\'andez-Lerma, On\'esimo and Mu\~noz de Ozak, Myriam},
     title = {Discrete-time {Markov} control processes with discounted unbounded costs: {Optimality} criteria},
     journal = {Kybernetika},
     pages = {191--212},
     year = {1992},
     volume = {28},
     number = {3},
     mrnumber = {1174656},
     zbl = {0771.93054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a2/}
}
TY  - JOUR
AU  - Hernández-Lerma, Onésimo
AU  - Muñoz de Ozak, Myriam
TI  - Discrete-time Markov control processes with discounted unbounded costs: Optimality criteria
JO  - Kybernetika
PY  - 1992
SP  - 191
EP  - 212
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a2/
LA  - en
ID  - KYB_1992_28_3_a2
ER  - 
%0 Journal Article
%A Hernández-Lerma, Onésimo
%A Muñoz de Ozak, Myriam
%T Discrete-time Markov control processes with discounted unbounded costs: Optimality criteria
%J Kybernetika
%D 1992
%P 191-212
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a2/
%G en
%F KYB_1992_28_3_a2
Hernández-Lerma, Onésimo; Muñoz de Ozak, Myriam. Discrete-time Markov control processes with discounted unbounded costs: Optimality criteria. Kybernetika, Tome 28 (1992) no. 3, pp. 191-212. http://geodesic.mathdoc.fr/item/KYB_1992_28_3_a2/

[1] A. Bensoussan: Stochastic control in discrete time and applications to the theory of production. Math. Programm. Study 18 (1982), 43-60. | MR

[2] D. P. Bertsekas: Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, N.J. 1987. | MR | Zbl

[3] D. P. Bertsekas, S. E. Shreve: Stochastic Optimal Control: The Discrete Time Case. Academic Press, New York 1978. | MR | Zbl

[4] R.N. Bhattacharya, M. Majumdar: Controlled semi-Markov models - the discounted case. J. Statist. Plann. Inference 21 (1989), 365-381. | MR | Zbl

[5] D. Blackwell: Discounted dynamic programming. Ann. Math. Statist. 36 (1965), 226-235. | MR | Zbl

[6] R.S. Bucy: Stability and positive supermartingales. J. Diff. Eq. 1 (1965), 151-155. | MR | Zbl

[7] R. Cavazos-Cadena: Finite-state approximations for denumerable state discounted Markov decision processes. Appl. Math. Optim. 11, (1986), 1-26. | MR | Zbl

[8] M.H.A. Davis: Martingale methods in stochastic control. Lecture Notes in Control and Inform. Sci. 16 (1979), 85-117. | MR | Zbl

[9] E. B. Dynkin, A. A. Yushkevich: Controlled Markov Processes. Springer-Verlag, New York 1979. | MR

[10] O. Hernández-Lerma: Lyapunov criteria for stability of differential equations with Markov parameters. Bol. Soc. Mat. Mexicana 24 (1979), 27-48. | MR

[11] O. Hernández-Lerma: Adaptive Markov Control Processes. Springer-Verlag, New York 1989. | MR

[12] O. Hernández-Lerma, R. Cavazos-Cadena: Density estimation and adaptive control of Markov processes: average and discounted criteria. Acta Appl. Math. 20 (1990), 285-307. | MR

[13] O. Hernández-Lerma, J. B. Lasserre: Average cost optimal policies for Markov control processes with Borel state space and unbounded costs. Syst. Control Lett. 15 (1990), 349-356. | MR

[14] O. Hernández-Lerma, J. B. Lasserre: Value iteration and rolling plans for Markov control processes with unbounded rewards. J. Math. Anal. Appl. (to appear). | MR

[15] O Hernández-Lerma, J. B. Lasserre: Error bounds for rolling horizon policies in discrete-time Markov control processes. IEEE Trans. Automat. Control 35 (1990), 1118-1124. | MR

[16] O. Hernández-Lerma R. Montes de Oca, R. Cavazos-Cadena: Recurrence conditions for Markov decision processes with Borel state space: a survey. Ann. Oper. Res. 28 (1991), 29-46. | MR

[17] O. Hernández-Lerma, W. Runggaldier: Monotone approximations for convex stochastic control problems (submitted for publication).

[18] K. Hinderer: Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin - Heidelberg - New York 1970. | MR | Zbl

[19] A. Hordijk, H.C. Tijms: A counterexample in discounted dynamic programming. J. Math. Anal. Appl. 39 (1972), 455-457. | MR | Zbl

[20] H.J. Kushner: Optimal discounted stochastic control for diffusion processes. SIAM J. Control 5 (1967), 520-531. | MR | Zbl

[21] S.A. Lippman: On the set of optimal policies in discrete dynamic programming. J. Math. Anal. Appl. 24 (1968), 2,440-445. | MR | Zbl

[22] S.A. Lippman: On dynamic programming with unbounded rewards. Manag. Sci. 21 (1975), 1225-1233. | MR | Zbl

[23] P. Mandl: On the variance in controlled Markov chains. Kybernetika 7 (1971), 1, 1-12. | MR | Zbl

[24] P. Mandl: A connection between controlled Markov chains and martingales. Kybernetika 9 (1973), 4, 237-241. | MR | Zbl

[25] S.P. Meyn: Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function. SIAM J. Control Optim. 27 (1989), 1409-1439. | MR | Zbl

[26] U. Rieder: On optimal policies and martingales in dynamic programming. J. Appl. Probab. 13 (1976), 507-518. | MR | Zbl

[27] U. Rieder: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131. | MR | Zbl

[28] M. Schäl: Estimation and control in discounted stochastic dynamic programming. Stochastics 20 (1987), 51-71. | MR

[29] J. Wessels: Markov programming by successive approximations with respect to weighted supremum norms. J. Math. Anal. Appl. 58 (1977), 326-335. | MR | Zbl

[30] W. Whitt: Approximations of dynamic programs. I. Math. Oper. Res. 4 (1979), 179-185. | MR | Zbl