Large adaptive estimation in linear regression model. I. Consistency
Kybernetika, Tome 28 (1992) no. 1, pp. 26-36 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F35, 62G07, 62G20, 62G35, 62J05, 93E10
@article{KYB_1992_28_1_a1,
     author = {V{\'\i}\v{s}ek, Jan \'Amos},
     title = {Large adaptive estimation in linear regression model. {I.} {Consistency}},
     journal = {Kybernetika},
     pages = {26--36},
     year = {1992},
     volume = {28},
     number = {1},
     mrnumber = {1159872},
     zbl = {0792.62033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1992_28_1_a1/}
}
TY  - JOUR
AU  - Víšek, Jan Ámos
TI  - Large adaptive estimation in linear regression model. I. Consistency
JO  - Kybernetika
PY  - 1992
SP  - 26
EP  - 36
VL  - 28
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_1992_28_1_a1/
LA  - en
ID  - KYB_1992_28_1_a1
ER  - 
%0 Journal Article
%A Víšek, Jan Ámos
%T Large adaptive estimation in linear regression model. I. Consistency
%J Kybernetika
%D 1992
%P 26-36
%V 28
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_1992_28_1_a1/
%G en
%F KYB_1992_28_1_a1
Víšek, Jan Ámos. Large adaptive estimation in linear regression model. I. Consistency. Kybernetika, Tome 28 (1992) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/KYB_1992_28_1_a1/

[1] R. Beran: An efficient and robust adaptive estimator of location. Ann. Statist. 6 (1978), 292 - 313. | MR | Zbl

[2] P.J. Bickel: The 1980 Wald Memorial Lectures - On adaptive estimation. Ann. Statist. 10 (1982), 647-671.

[3] Y. Dodge: An introduction to statistical-data analysis $L_{1}$-norm based. In: Statistical Data Analysis Based on the $L_{1}$-norm and Related Methods (Y. Dodge, ed.), North-Holland, Amsterdam 1987. | MR

[4] J. Jurečková: Regression quantiles and trimmed least square estimator under a general design. Kybernetika 20 (1984), 345 - 357. | MR

[5] F. R. Hampel E. M. Ronchetti P.J. Rousseeuw, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions. J. Wiley, New York 1986. | MR

[6] G. Heimann: Adaptive und robuste Schätzer in Regression Modellen. Ph. D. Diseration, Institut für Math. Stochastik, Universität Hamburg 1988.

[7] R. Koenker: A lecture read on Charles University during his visit in Prague 1989. | Zbl

[8] R. Koenker, G. Basset: Regression quantiles. Econometrica 46 (1978), 33 - 50. | MR

[9] H. Koul, F. DeWet: Minimum distance estimation in a linear regression model. Ann. Statist. 11 (1983), 921 - 932. | MR | Zbl

[10] R. A. Maronna, V.J. Yohai: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers. Z. Wahrsch. verw. Gebiete 58 (1981), 7 - 20. | MR

[11] P.J. Rousseeuw, A.M. Leroy: Robust Regression and Outlier Detection. J. Wiley, New York 1987. | MR | Zbl

[12] D. Ruppert, R.J. Carroll: Trimmed least squares estimation in linear model. J. Amer. Statist. Assoc. 75 (1980), 828 - 838. | MR

[13] A. V. Skorokhod: Limit theorems for stochastic processes. Teor. Veroyatnost. i Primenen. 1 (1956), 261 - 290. | Zbl

[14] C. Stein: Efficient nonparametric testing and estimation. In: Proc. Third Berkeley Symp. Math. Statist. Prob. 1 (1956), 187 - 196. Univ. of California Press, Berkeley, Calif. 1956. | MR | Zbl

[15] C. Stone: Adaptive maximum likelihood estimators of a location parameter. Ann. Statist. 3 (1975), 267 - 284. | MR | Zbl

[16] J. Á. Víšek: What is adaptivity of regression analysis intended for?. Transactions of ROBUST'90, JČMF, Prague 1990, pp. 160 - 181.

[17] J. Á. Víšek: Adaptive Estimation in Linear Regression Model. Research Report No. 1642, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.

[18] J. Á. Víšek: Adaptive Maximum-likelihood-like Estimation in Linear Model. Research Report No. 1654, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.

[19] J. Á. Víšek: Adaptive estimation in linear regression model and test of symmetry of residuals. To appear in the Proceedings of the Second International Workshop on Model-Oriented Data Analysis, Springer-Verlag, Wien.