@article{KYB_1991_27_6_a5,
author = {Hromkovi\v{c}, Juraj},
title = {Branching programs provide lower bounds on the area of {VLSI} circuits},
journal = {Kybernetika},
pages = {542--550},
year = {1991},
volume = {27},
number = {6},
mrnumber = {1150942},
zbl = {0746.68039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a5/}
}
Hromkovič, Juraj. Branching programs provide lower bounds on the area of VLSI circuits. Kybernetika, Tome 27 (1991) no. 6, pp. 542-550. http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a5/
[1] L. Babai P. Hajnal E. Szemeredi, G. Turán: A lower bound for read-once only branching programs. J. Computer System Sci. 35 (1987), 153-162. | MR
[2] D. A. Barrington: Bounded width polynomial-size branching programs recognize exactly those languages in $NC^{1}$. In: Proc. 18th ACM STOC, ACM 1986, pp. 1-5.
[3] A. Borodin D. Dolev F. E. Fich, W. Paul: Bounds for width two branching programs. In: Proc. 15th ACM STOC, ACM 1983, pp. 87-93.
[4] A. K. Chandra M. L. Furst, R. J. Lipton: Multiparty protocols. In: Proc. 15th ACM STOC, ACM 1983, pp. 94-99.
[5] M. Ftáčnik, J. Hromkovič: Nonlinear lower bounds for real-time branching programs. Comput. Artificial Intelligence 4 (1985), 3, 353-359.
[6] J. Hromkovič: Some complexity aspects of VLSI computations. Part 1. A framework for the study of information transfer in VLSI circuits. Comput. Artificial Intelligence 7 (1988), 3, 229-252. | MR
[7] J. Hromkovič: Some complexity aspects of VLSI computations. Part 2. Topology of circuits and information transfer. Comput. Artificial Intelligence 7 (1988), 4, 289-302, | MR
[8] J. Hromkovič: Some complexity aspects of VLSI computations. Part 5. Nondeterministic and probabilistic VLSI circuits. Comput. Artificial Intelligence 8 (1989), 2, 169-188. | MR
[9] S. P. Jukna: Lower bounds on the complexity of local circuits. In: Mathematical Foundation of Computer Science - Proc. 12th Symposium, Bratislava, Czechoslovakia, August 25-29, 1986 (J. Gruska, B. Rovan, J. Wiedermann, eds.). (Lecture Notes in Computer Science 233.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1986, pp. 440-448. | Zbl
[10] W. Masek: A Fast Algorithm for String Editing Problem and Decision Graph Complexity. M. Sc. Thesis, MIT, May 1976.
[11] E. I. Nečiporuk: On a Boolean function. Dokl. Akad. Nauk SSSR 169 (1966), 4, 765-766. English translation: Soviet Math. Dokl. 7 (1966), 999-1000. | MR
[12] P. Pudlák, S. Žák: Space complexity of computations. Unpublished manuscript, 1982.
[13] P. Pudlák: A lower bound on complexity of branching programs. In: Mathematical Foudations of Computer Science - Proc. 11th Symposium, Prague, Czechoslovakia, September 3-7, 1984 (M. P. Chytil, V. Koubek, eds.). (Lecture Notes in Computer Science 176.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1984, pp. 480-489. | MR
[14] P. Pudlák: The hierarchy of Boolean circuits. Comput. Artificial Intelligence 6 (1987), 5, 449-468. | MR
[15] C D. Thompson: A Complexity Theory for VLSI. Doctoral Dissertation, CMU-CS-88-140, Computer Science Dept., Carnegie-Mellon University, Pittsburg, August 1980, 131 p.
[16] J. D. Ullman: Computational Aspects of VLSI. Computer Science Press, New York 1984. | Zbl
[17] I. Wegener: On the Complexity of Branching Programs and Decision Trees for Qlique Functions. Universitat Frankfurt, Fachbereich Informatik, Int. Rept. 5/84, 1984. | MR
[18] I. Wegener: Time-space trade-offs for branching programs. J. Comput. System. Sci. 32 (1986), 1,91-96. | MR | Zbl
[19] I. Wegener: Optimal decision trees and one-time only branching programs for symmetric Boolean functions. Inform. Control 62 (1984), 129-143. | MR | Zbl
[20] I. Wegener: The Complexity of Boolean Functions. Wiley-Teubner Series in Computer Science, B. G. Teubner, Stuttgart, John Wiley and Sons, New York 1987. | MR | Zbl
[21] S. Žák: An exponential lower bound for one-time-only branching programs. In: Mathematical Foundations of Computer Science - Proc. 11th Symposium, Prague, Czechoslovakia, September 3 - 7, 1984 (M. P. Chytil, V. Koubek, eds.). (Lecture Notes in Computer Science 176.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1984, pp. 562-566. | MR