Separation theorems for sets in product spaces and equivalent assertions
Kybernetika, Tome 27 (1991) no. 6, pp. 522-534 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 46A22, 46A40, 46A99, 46N10, 49J27, 90C29
@article{KYB_1991_27_6_a3,
     author = {Thierfelder, J\"org},
     title = {Separation theorems for sets in product spaces and equivalent assertions},
     journal = {Kybernetika},
     pages = {522--534},
     year = {1991},
     volume = {27},
     number = {6},
     mrnumber = {1150940},
     zbl = {0778.46005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a3/}
}
TY  - JOUR
AU  - Thierfelder, Jörg
TI  - Separation theorems for sets in product spaces and equivalent assertions
JO  - Kybernetika
PY  - 1991
SP  - 522
EP  - 534
VL  - 27
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a3/
LA  - en
ID  - KYB_1991_27_6_a3
ER  - 
%0 Journal Article
%A Thierfelder, Jörg
%T Separation theorems for sets in product spaces and equivalent assertions
%J Kybernetika
%D 1991
%P 522-534
%V 27
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a3/
%G en
%F KYB_1991_27_6_a3
Thierfelder, Jörg. Separation theorems for sets in product spaces and equivalent assertions. Kybernetika, Tome 27 (1991) no. 6, pp. 522-534. http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a3/

[1] W. Bonnice, R. Silverman: The Hahn-Banach extension and the least upper bound properties are equivalent. Proc. Amer. Math. Soc. 18 (1967), 843 - 850. | MR | Zbl

[2] J. M. Borwein: Continuity and differentiability properties of convex operators. Proc. London Math. Soc. 44 (1982), 3, 420-444. | MR | Zbl

[3] J. M. Borwein: On the Hahn-Banach extension property. Proc. Amer. Math. Soc. 86 (1982), 1,42-46. | MR | Zbl

[4] K.-H. Elster, J. Thierfelder: A general concept on cone approximations in nondifferentiable optimization. In: Nondifferentiable Optimization: Motivations and Applications (V. F. Demjanov; D. Pallaschke, eds.).(Lecture Notes in Economics and Mathematical Systems vol. 255.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985, pp. 170-189. | MR

[5] R. B. Holmes: Geometric Functional Analysis and its Applications. Springer-Verlag, Berlin-Heidelberg-New York 1975. | MR | Zbl

[7] G. Jameson: Ordered Linear Spaces. (Lecture Notes in Mathematics, vol. 141.) Springer- Verlag, Berlin -Heidelberg-New York 1970. | MR | Zbl

[8] G. Köthe: Topologische Lineare Raume I. Springer-Verlag, Berlin-Heidelberg-New York 1966. | MR

[9] R. Nehse: The Hahn-Banach property and equivalent conditions. Comment. Math. Univ. Carolinae 19 (1978), 1, 165-177. | MR | Zbl

[10] R. Nehse: Separation of two sets in product spaces. Math. Nachrichten 97 (1980), 179-187. | MR

[11] R. Nehse: Zwei Fortsetzungssätze. Wiss. Zeitschrift TH Ilmenau 30 (1984), 49-57. | MR | Zbl

[12] A. L. Peressini: Ordered Topological Vector Spaces. Harper and Row, New York-Evanston-London 1967. | MR | Zbl

[13] J. Thierfelder: Nonvertical affine manifolds and separation theorems in product spaces (to appear). | MR

[14] T. O. To: The equivalence of the least upper bound property and the Hahn-Banach property in ordered linear spaces. Proc. Amer. Math. Soc. 30 (1971), 287-295. | MR

[15] M. Valadier: Sous-differentiabilité des fonctions convexes a valeurs dans un espace vectoriel ordoné. Math. Scand. 30 (1972), 65-74. | MR

[16] J. Zowe: Subdifferential of convex functions with values in ordered vector spaces. Math. Scand. 34(1974), 69-83. | MR