@article{KYB_1991_27_6_a3,
author = {Thierfelder, J\"org},
title = {Separation theorems for sets in product spaces and equivalent assertions},
journal = {Kybernetika},
pages = {522--534},
year = {1991},
volume = {27},
number = {6},
mrnumber = {1150940},
zbl = {0778.46005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a3/}
}
Thierfelder, Jörg. Separation theorems for sets in product spaces and equivalent assertions. Kybernetika, Tome 27 (1991) no. 6, pp. 522-534. http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a3/
[1] W. Bonnice, R. Silverman: The Hahn-Banach extension and the least upper bound properties are equivalent. Proc. Amer. Math. Soc. 18 (1967), 843 - 850. | MR | Zbl
[2] J. M. Borwein: Continuity and differentiability properties of convex operators. Proc. London Math. Soc. 44 (1982), 3, 420-444. | MR | Zbl
[3] J. M. Borwein: On the Hahn-Banach extension property. Proc. Amer. Math. Soc. 86 (1982), 1,42-46. | MR | Zbl
[4] K.-H. Elster, J. Thierfelder: A general concept on cone approximations in nondifferentiable optimization. In: Nondifferentiable Optimization: Motivations and Applications (V. F. Demjanov; D. Pallaschke, eds.).(Lecture Notes in Economics and Mathematical Systems vol. 255.) Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1985, pp. 170-189. | MR
[5] R. B. Holmes: Geometric Functional Analysis and its Applications. Springer-Verlag, Berlin-Heidelberg-New York 1975. | MR | Zbl
[7] G. Jameson: Ordered Linear Spaces. (Lecture Notes in Mathematics, vol. 141.) Springer- Verlag, Berlin -Heidelberg-New York 1970. | MR | Zbl
[8] G. Köthe: Topologische Lineare Raume I. Springer-Verlag, Berlin-Heidelberg-New York 1966. | MR
[9] R. Nehse: The Hahn-Banach property and equivalent conditions. Comment. Math. Univ. Carolinae 19 (1978), 1, 165-177. | MR | Zbl
[10] R. Nehse: Separation of two sets in product spaces. Math. Nachrichten 97 (1980), 179-187. | MR
[11] R. Nehse: Zwei Fortsetzungssätze. Wiss. Zeitschrift TH Ilmenau 30 (1984), 49-57. | MR | Zbl
[12] A. L. Peressini: Ordered Topological Vector Spaces. Harper and Row, New York-Evanston-London 1967. | MR | Zbl
[13] J. Thierfelder: Nonvertical affine manifolds and separation theorems in product spaces (to appear). | MR
[14] T. O. To: The equivalence of the least upper bound property and the Hahn-Banach property in ordered linear spaces. Proc. Amer. Math. Soc. 30 (1971), 287-295. | MR
[15] M. Valadier: Sous-differentiabilité des fonctions convexes a valeurs dans un espace vectoriel ordoné. Math. Scand. 30 (1972), 65-74. | MR
[16] J. Zowe: Subdifferential of convex functions with values in ordered vector spaces. Math. Scand. 34(1974), 69-83. | MR