Quality of optimum statistical estimates in case of ambiguity
Kybernetika, Tome 27 (1991) no. 6, pp. 506-521 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 62F10, 62F99, 62N99, 62P99
@article{KYB_1991_27_6_a2,
     author = {Vrana, Ivan},
     title = {Quality of optimum statistical estimates in case of ambiguity},
     journal = {Kybernetika},
     pages = {506--521},
     year = {1991},
     volume = {27},
     number = {6},
     zbl = {0766.62014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a2/}
}
TY  - JOUR
AU  - Vrana, Ivan
TI  - Quality of optimum statistical estimates in case of ambiguity
JO  - Kybernetika
PY  - 1991
SP  - 506
EP  - 521
VL  - 27
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a2/
LA  - en
ID  - KYB_1991_27_6_a2
ER  - 
%0 Journal Article
%A Vrana, Ivan
%T Quality of optimum statistical estimates in case of ambiguity
%J Kybernetika
%D 1991
%P 506-521
%V 27
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a2/
%G en
%F KYB_1991_27_6_a2
Vrana, Ivan. Quality of optimum statistical estimates in case of ambiguity. Kybernetika, Tome 27 (1991) no. 6, pp. 506-521. http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a2/

[1] I. Vrána: Optimum statistical estimates in conditions of ambiguity. IEEE Trans. Inform. Theory IT-38 (in print).

[2] J. W. Dettman: Mathematical Methods in Physics and Technic. McGraw-Hill, New York 1962. | MR

[3] Tables of Error Function and Its First Twenty Derivatives. Harvard University Press. Cambridge 1952. | MR