@article{KYB_1991_27_6_a0,
author = {Cipra, Tom\'a\v{s} and Romera, Rosario},
title = {Robust {Kalman} filter and its application in time series analysis},
journal = {Kybernetika},
pages = {481--494},
year = {1991},
volume = {27},
number = {6},
mrnumber = {1150938},
zbl = {0745.62090},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a0/}
}
Cipra, Tomáš; Romera, Rosario. Robust Kalman filter and its application in time series analysis. Kybernetika, Tome 27 (1991) no. 6, pp. 481-494. http://geodesic.mathdoc.fr/item/KYB_1991_27_6_a0/
[1] K. K. Aase: Recursive estimation in non-linear time series models of autoregressive type. J. Roy. Statist. Soc. Ser. B 45 (1983), 228-237. | MR | Zbl
[2] B. D. O. Anderson, J. B. Moore: Optimal Filtering. Prentice-Hall, Englewood Cliffs, New Jersey 1979. | Zbl
[3] A. E. Bryson, J. C. Ho: Applied Optimal Control. J. Wiley, New York 1975. | MR
[4] K. Campbell: Recursive computation of M-estimates for the parameters of a finite autoregressive process. Ann. Statist. 10 (1982), 442-453. | MR | Zbl
[5] J. E. Englund: Multivariate Recursive M-estimators of Location and Scatter for Dependent Sequences. Research Report, University of Lund and Lund Institute of Technology 1988.
[6] A. A. Ershov, R. S. Liptser: Robust Kalman filter in discrete time. Automat. Remote Control 39 (1978), 359-367. | Zbl
[7] E. J. Hannan: Multiple Time Series. J. Wiley, New York 1970. | MR | Zbl
[8] P. J. Harrison, C. F. Stevens: Bayesian forecasting. J. Roy. Statist. Soc. Ser. B 38 (1976), 205-247. | MR | Zbl
[9] U. Holst: Convergence of a recursive stochastic algorithm with m-dependent observations. Scand. J. Statist. 7 (1980), 207-215. | MR | Zbl
[10] U. Hoist: Convergence of a recursive robust algorithm with strongly regular observations. Stochastic Process. Appl. 16 (1984), 305-320. | MR
[11] P. J. Huber: Robust Statistics. J. Wiley, New York 1981. | MR | Zbl
[12] R. D. Martin: Robust estimation for time series autoregressions. In: Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds.), Academic Press, New York 1979, pp. 147-176.
[13] C. J. Masreliez: Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Automat. Control AC-20 (1975), 107-110. | Zbl
[14] C. J. Masreliez, R. D. Martin: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 (1977), 361 - 371. | MR | Zbl
[15] R. J. Meinhold, N. D. Singpurwalla: Robustification of Kalman filter models. J. Amer. Statist. Assoc. 84 (1989), 479-486. | MR
[16] M. Pantel: Adaptive Verfahren der stochastischen Approximation. Dissertation, Universitiit Essen 1979.
[17] D. Peňa, J. Guttman: Optimal collapsing of mixture distributions in robust recursive estimation. Comm. Statist. Theory Methods 18 (1989), 817-833. | MR
[18] B. T. Polyak, Ya. Z. Tsypkin: Adaptive estimation algorithms: convergence, optimality, stability (in Russian). Avtomat. Telemekh. (1979), 3, 71-84. | MR
[19] B. T. Polyak, Ya. Z. Tsypkin: Optimal methods of estimation of autoregressive parameters under incomplete information (in Russian). Tekh. kibernet. (1983), 1, 118-126. | MR
[20] H. Robbins, D. Siegmund: A convergence theorem for non negative almost supermartingales and some applications. In: Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, New York 1971, pp. 233 - 257. | MR | Zbl
[21] L. D. Servi, Y. C. Ho: Recursive estimation in the presence of uniformly distributed measurement noise. IEEE Trans. Automat. Control AC-26 (1981), 563-565. | MR | Zbl
[22] N. Stockinger, R. Dutter: Robust Time Series Analysis: A Survey. Supplement to Kybernetika vol. 23 (1987). | MR | Zbl
[23] Yu. Sh. Verulava: Convergence of a stochastic approximation algorithm for estimating an autoregressive parameter (in Russian). Avtomat. Telemekh. (1981), 7, 115-119. | MR