Solution of the marginal problem and decomposable distributions
Kybernetika, Tome 27 (1991) no. 5, pp. 403-412 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 60E05, 68T30
@article{KYB_1991_27_5_a1,
     author = {Jirou\v{s}ek, Radim},
     title = {Solution of the marginal problem and decomposable distributions},
     journal = {Kybernetika},
     pages = {403--412},
     year = {1991},
     volume = {27},
     number = {5},
     mrnumber = {1132602},
     zbl = {0752.60009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a1/}
}
TY  - JOUR
AU  - Jiroušek, Radim
TI  - Solution of the marginal problem and decomposable distributions
JO  - Kybernetika
PY  - 1991
SP  - 403
EP  - 412
VL  - 27
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a1/
LA  - en
ID  - KYB_1991_27_5_a1
ER  - 
%0 Journal Article
%A Jiroušek, Radim
%T Solution of the marginal problem and decomposable distributions
%J Kybernetika
%D 1991
%P 403-412
%V 27
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a1/
%G en
%F KYB_1991_27_5_a1
Jiroušek, Radim. Solution of the marginal problem and decomposable distributions. Kybernetika, Tome 27 (1991) no. 5, pp. 403-412. http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a1/

[1] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146-158. | MR

[2] W. E. Deming, F. F. Stephan: On a least square adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11 (1940), 427-444. | MR

[3] A. Feinstein: Foundations of Information Theory. McGraw-Hill, New York-Toronto- London 1958. | MR | Zbl

[4] R. Jiroušek: A survey of methods used in probabilistic expert system for knowledge integration. Knowledge Based Systems 3 (1990), 1, 7-12.

[5] H. G. Kellerer: Verteilungsfunktionen mit gegeben Marginalverteilungen. Z. Warhsch. Verw. Gebiete 3 (1964), 247-270. | MR

[6] F. M. Malvestuto: Computing the maximum-entropy extension of given discrete probability distributions. Coraput. Statist. Data Anal. 8 (1989), 299-311. | MR | Zbl

[7] Lianwen Zhang: Studies on finding hyper tree covers for hypergraphs. Working Paper No. 198, School of Business, The University of Kansas, Lawrence 1988.

[8] R. E. Tarjan, M. Yannakakis: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13 (1984), 3, 566-579: | MR | Zbl