@article{KYB_1991_27_5_a1,
author = {Jirou\v{s}ek, Radim},
title = {Solution of the marginal problem and decomposable distributions},
journal = {Kybernetika},
pages = {403--412},
year = {1991},
volume = {27},
number = {5},
mrnumber = {1132602},
zbl = {0752.60009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a1/}
}
Jiroušek, Radim. Solution of the marginal problem and decomposable distributions. Kybernetika, Tome 27 (1991) no. 5, pp. 403-412. http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a1/
[1] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3 (1975), 146-158. | MR
[2] W. E. Deming, F. F. Stephan: On a least square adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Statist. 11 (1940), 427-444. | MR
[3] A. Feinstein: Foundations of Information Theory. McGraw-Hill, New York-Toronto- London 1958. | MR | Zbl
[4] R. Jiroušek: A survey of methods used in probabilistic expert system for knowledge integration. Knowledge Based Systems 3 (1990), 1, 7-12.
[5] H. G. Kellerer: Verteilungsfunktionen mit gegeben Marginalverteilungen. Z. Warhsch. Verw. Gebiete 3 (1964), 247-270. | MR
[6] F. M. Malvestuto: Computing the maximum-entropy extension of given discrete probability distributions. Coraput. Statist. Data Anal. 8 (1989), 299-311. | MR | Zbl
[7] Lianwen Zhang: Studies on finding hyper tree covers for hypergraphs. Working Paper No. 198, School of Business, The University of Kansas, Lawrence 1988.
[8] R. E. Tarjan, M. Yannakakis: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13 (1984), 3, 566-579: | MR | Zbl