A non-orthogonal projection model for evaluating photographs recording a population of spheres lying on a flat plate
Kybernetika, Tome 27 (1991) no. 5, pp. 393-402
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{KYB_1991_27_5_a0,
author = {Hor\'alek, Vratislav},
title = {A non-orthogonal projection model for evaluating photographs recording a population of spheres lying on a flat plate},
journal = {Kybernetika},
pages = {393--402},
year = {1991},
volume = {27},
number = {5},
zbl = {0749.60098},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a0/}
}
TY - JOUR AU - Horálek, Vratislav TI - A non-orthogonal projection model for evaluating photographs recording a population of spheres lying on a flat plate JO - Kybernetika PY - 1991 SP - 393 EP - 402 VL - 27 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a0/ LA - en ID - KYB_1991_27_5_a0 ER -
Horálek, Vratislav. A non-orthogonal projection model for evaluating photographs recording a population of spheres lying on a flat plate. Kybernetika, Tome 27 (1991) no. 5, pp. 393-402. http://geodesic.mathdoc.fr/item/KYB_1991_27_5_a0/
[1] E. E. Underwood: Quantitative Stereology. Addison-Wesley, Reading, Mass. 1970.
[2] V. Horálek: On geometric-optical projection of spatial particle size distribution. Kybernetika 21 (1985), 85-95.
[3] V. Horálek, R. Coleman: Correction coefficients for the size distribution of photographically recorded spherical particles. J. Microscopy 138, Pt 2 (1985), 213-219.
[4] A. S. Mujumdar: Advances in Drying. Vol. 1 and 2. Mc Graw Hill, Hemisphere Publ. Corp., New York 1980.