Finite settling time stabilisation of a family of discrete-time systems
Kybernetika, Tome 27 (1991) no. 4, pp. 371-383 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C55, 93D05, 93D15
@article{KYB_1991_27_4_a8,
     author = {Karcanias, Nicos and Milonidis, E.},
     title = {Finite settling time stabilisation of a family of discrete-time systems},
     journal = {Kybernetika},
     pages = {371--383},
     year = {1991},
     volume = {27},
     number = {4},
     mrnumber = {1127912},
     zbl = {0768.93061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_4_a8/}
}
TY  - JOUR
AU  - Karcanias, Nicos
AU  - Milonidis, E.
TI  - Finite settling time stabilisation of a family of discrete-time systems
JO  - Kybernetika
PY  - 1991
SP  - 371
EP  - 383
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_4_a8/
LA  - en
ID  - KYB_1991_27_4_a8
ER  - 
%0 Journal Article
%A Karcanias, Nicos
%A Milonidis, E.
%T Finite settling time stabilisation of a family of discrete-time systems
%J Kybernetika
%D 1991
%P 371-383
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_4_a8/
%G en
%F KYB_1991_27_4_a8
Karcanias, Nicos; Milonidis, E. Finite settling time stabilisation of a family of discrete-time systems. Kybernetika, Tome 27 (1991) no. 4, pp. 371-383. http://geodesic.mathdoc.fr/item/KYB_1991_27_4_a8/

[1] G. D. Forney: Minimal bases of rational vector spaces with applications to multivariable linear systems. SIAM J. Control Optim. 13 (1975), 493 - 520. | MR | Zbl

[2] B. K. Ghosh, C. I. Byrnes: Simultaneous stabilisation and simultaneous pole placement by non-switching dynamic compensation. IEEE Trans. Automat. Control AC-28 (1983), 735-741. | MR

[3] R. E. Kalman: On the general theory of control systems. In: Proc. 1st IFAC Congress Automat. Control, Moscow 1960, 4, pp. 481-492.

[4] N. Karcanias: Matrix Equations over Principal Ideal Domains. City Univ., Control Engin. Centre Research Report, London 1987.

[5] N. Karcanias, E. Milonidis: Total finite settling time stabilisation for discrete time SISO systems. IMA Control Theory Conf. Univ. of Strathclyde, Glasgow 1988.

[6] V. Kučera: The structure and properties of time-optimal discrete linear control. IEEE Trans. Automat. Control AC-16 (1971), 375-377.

[7] V. Kučera: Discrete Linear Control: The Polynomial Equation Approach. J. Wiley, New York 1979. | MR

[8] V. Kučera: Polynomial design of dead-beat control laws. Kybernetika 16 (1980), 198-203. | MR

[9] E. Milonidis, N. Karcanias: Total Finite Settling Time Stabilisation for Discrete Time MIMO systems. City University, Control Engineering Centre, Research Report CEC/ EM-NK/101, London 1990.

[10] R. Saeks, J. Murray: Fractional representation, algebraic geometry, and the simultaneous stabilisation problem. IEEE Trans. Automat. Control AC-27 (1982), 4, 895 - 903. | MR

[11] M. Vidyasagar: Control System Synthesis: A Factorization Approach. MIT Press, Boston, Mass. 1985. | MR | Zbl

[12] Y. Zhao, H. Kimura: Multivariate dead-beat control with robustness. Internat. J. Control 47 (1988), 229-255. | MR