@article{KYB_1991_27_3_a9,
author = {Kaczorek, Tadeusz},
title = {Some recent results in singular {2-D} systems theory},
journal = {Kybernetika},
pages = {253--262},
year = {1991},
volume = {27},
number = {3},
mrnumber = {1116839},
zbl = {0746.93013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a9/}
}
Kaczorek, Tadeusz. Some recent results in singular 2-D systems theory. Kybernetika, Tome 27 (1991) no. 3, pp. 253-262. http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a9/
[1] S. Attasi: Modellisation et traitement de suites a deux indices. IRIA Rap. Laboria, 1975.
[2] E. Fornasini, G. Marchesini: State space realization theory of two-dimensional filters. IEEE Trans. Automat. Control AC-21 (1976), 484-491. | MR | Zbl
[3] E. Fornasini, G. Marchesini: Doubly indexed dynamical systems: State space models and structural properties. Math. System Theory 12 (1978), 59-75. | MR | Zbl
[4] T. Kaczorek: General response formula for two-dimensional linear systems with variable coefficients. IEEE Trans. Automat. Control AC-31 (1986), 278-280. | MR | Zbl
[5] T. Kaczorek: Singular general model of 2-D systems and its solution. IEEE Trans. Automat. Control AC-33 (1988), 1060- 1061. | MR | Zbl
[6] T. Kaczorek: Singular multidimensional linear discrete systems. Proc. IEEE Internat. Symp. Circuits and Systems Helsinki, June 7-9, 1988, pp. 105-108. | Zbl
[7] T. Kaczorek: Singular Roesser model and reduction to its canonical form. Bull. Polish Acad. Sci. Tech. Sci. 35 (1987), 645-652. | Zbl
[8] T. Kaczorek: General response formula and minimum energy control for general singular model of 2-D systems. IEEE Trans. Automat. Control AC-34 (1989), 433-436. | MR
[9] T. Kaczorek: General response formula, controllability and observability for singular 2-D linear systems with variable coefficients. Proc. IMACS-IFAC Internat. Symp. Math, and Intal. Models in System Simul. Sept. 3-7, Brussels 1990. | MR
[10] T. Kaczorek: Equivalence of singular 2-D linear models. Bull. Pol. Acad. Sci. Tech. Sci. 37 (1989), 263-267. | MR | Zbl
[11] T. Kaczorek: Existence and uniqueness of solutions and Cayley-Hamilton theorem for general singular model of 2-D systems. Bull. Pol. Acad. Sci. Tech. Sci. 37 (1989) (in press). | Zbl
[12] T. Kaczorek: Observability and reconstructibility of singular 2-D systems. Bull. Pol. Acad. Sci. 37 (1989), 531-538. | MR | Zbl
[13] T. Kaczorek: Observers for 2-D singular systems. Bull. Pol. Scad. Sci. Tech. Sci. 37 (1989), 551-556. | MR | Zbl
[14] T. Kaczorek: Shuffle algorithm for singular 2-D systems. Bull. Pol. Acad. Sci. Tech. Sci. 38 (1990) (in press).
[15] T. Kaczorek: The linear-quadratic optimal regulator for singular 2-D systems with variable coefficients. IEEE Trans. Automat. Control AC-34 (1989), 565 - 566. | MR
[16] T. Kaczorek, M. Świerkosz: Eigenvalue problem for singular Roesser model. Found. Control Engrg. 14 (1989), 25-37. | MR
[17] J. Kurek: The general state-space model for a two-dimensional linear digital system. IEEE Trans. Automat. Control AC-30 (1985), 600-602. | MR | Zbl
[18] J. Kurek: Strong observability and strong reconstructibility of a system described by the 2-D Roesser model. Internat. J. Control 47 (1988), 633-541. | MR | Zbl
[19] F. L. Lewis, B. G. Mertzios: On the analysis of two-dimensional discrete singular systems. Math. Control Signal Systems (1989) (in press).
[20] R. P. Roesser: A discrete state-space model for linear image processing. IEEE Trans. Automat. Control AC-21 (1975), 1-10. | MR | Zbl
[21] M. Šebek M. Bisiacco, E. Fornasini: Controllability and reconstructibility conditions for 2-D systems. IEEE Trans. Automat. Control AC-33 (1988), 496-499. | MR