Polynomial matrix solution to the discrete fixed-LAG smoothing problem
Kybernetika, Tome 27 (1991) no. 3, pp. 190-201 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 93C05, 93E11, 94A12
@article{KYB_1991_27_3_a3,
     author = {Grimble, Mike J.},
     title = {Polynomial matrix solution to the discrete {fixed-LAG} smoothing problem},
     journal = {Kybernetika},
     pages = {190--201},
     year = {1991},
     volume = {27},
     number = {3},
     mrnumber = {1116833},
     zbl = {0755.93025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a3/}
}
TY  - JOUR
AU  - Grimble, Mike J.
TI  - Polynomial matrix solution to the discrete fixed-LAG smoothing problem
JO  - Kybernetika
PY  - 1991
SP  - 190
EP  - 201
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a3/
LA  - en
ID  - KYB_1991_27_3_a3
ER  - 
%0 Journal Article
%A Grimble, Mike J.
%T Polynomial matrix solution to the discrete fixed-LAG smoothing problem
%J Kybernetika
%D 1991
%P 190-201
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a3/
%G en
%F KYB_1991_27_3_a3
Grimble, Mike J. Polynomial matrix solution to the discrete fixed-LAG smoothing problem. Kybernetika, Tome 27 (1991) no. 3, pp. 190-201. http://geodesic.mathdoc.fr/item/KYB_1991_27_3_a3/

[1] G. C. Goodwin, K. S. Sin: Adaptive Filtering, Prediction and Control. Prentice-Hall, New Jersey 1984. | Zbl

[2] T. J. Moir: Optimal deconvolution smoother. IEE Proc. Pt. D 133 (1986), 1, 13-18. | Zbl

[3] V. Kučera: Discrete Linear Control. J. Wiley, Chichester 1979. | MR

[4] T. J. Moir, M. J. Grimble: Optimal self-tuning filtering prediction and smoothing for discrete multivariable processes. IEEE Trans. Automat. Control AC-29 (1984), 2, 128-137. | Zbl

[5] U. Shaked: Transfer function approach to the fixed-point continuous smoothing problem. IEEE Trans. Automat. Control AC-23 (1978), 5, 945-948. | Zbl

[6] M. J. Grimble: A new finite-time linear smoothing filter. Internat. J. Systems Sci. 11 (1980), 10, 1189-1212. | Zbl

[7] T. J. Moir, M. J. Grimble: Finite interval smoothing for discrete-time systems. Systems Sci. 8 (1982), 1, 53-74. | MR | Zbl

[8] M. J. Grimble: $H_{\infite}$ design of optimal linear filters. In: Linear Circuits, Systems and Signal Processing: Theory and Application, MTNS Conf. Publication (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), North-Holland, Amsterdam 1988, pp. 533-540. | MR

[9] U. Shaked: A transfer function approach to the linear discrete stationary filtering and the steady-state discrete optimal control problems. Internat. J. Control 29 (1979), 2, 279-291. | MR | Zbl

[10] V. Panuška: A new form of the extended Kalman filter for parameter estimation in linear systems with correlated noise. IEEE Trans. Automat. Control AC-25 (1980), 2, 229-235. | MR

[11] P. T. K. Fung, M. J. Grimble: Dynamics ship positioning using a self-tuning Kalman filter. IEEE Trans. Automat. Control AC-28 (1983), 3, 339-350.